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HICUM Workshop Introduction
Introduction

=> investigate necessity of charge "partitioning" and possible modeling options
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• present version of HICUM 
• partitions total mobile charge Qm into Qf(ITf) and Qr(ITr) 
• assigns mobile charge Qf(ITf) entirely to (internal) B’E’

branch, although charge is distributed (1D)

• mobile charge partitioning from quasi-static con-
siderations is arbitrary 
=> to be based on dynamic terminal currents
     (i.e. their phase shift)

• III-V HBT models often try to separate mobile
charge into component for B’E’ and B’C’ branch

• observations:
• 1D device simulation: at low forward bias, 

|Im{y21}|/ω ~ JC although QjCi depends only on VB’C’ 

• measurements: slightly larger phase shift in y21 

=> cause of increase?
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HICUM Workshop Analysis
Analysis
• Taking the derivatives of Qf and Qr yields the capacitances:

,    ,    ,    

=> possible 1D small-signal (HICUM) equivalent circuit

=>  is modification of these elements sufficient?
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• "cross-coupled" capacitances repre-

sent charge controlled by other
branch voltage

• Note: mobile charge in BC SCR
affects both QjCi and Qf 

=> physics-based approach:
• Qr → Qr + τBCITf includes mobile charge

in BC SCR at low and medium bias 
• current dependence of CjCi at medium

and high current densities
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HICUM Workshop Analysis
Corresponding transit time
• Calculation of transit time corresponding to increase of Im{y21}.

   with   .

• Comparison of 1D quasi-static transit times   with  
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• Good agreement for not too high cur-
rent densities

• In HICUM:

and

with unknown partitioning factor fτBC
=> difficult to extract

τpC fτhCτfh=

τBC fτBCτf0=
VCE
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HICUM Workshop Charge partitioning
Charge partitioning
• difficulty to determine separate components in transit time and distinguish phase

shift contributions from CBC, RBCBE, NQS effect in y21 experimental data

• requirement for distributing charge to BE and BC branch: 
Total charge at B’ node has to remain the same (=> accurate y11 modeling) 

=>  general and flexible approach: partitioning factor for Qf 

=> Qf,c leads to additional phase shift and bias dependence of y21

• Note: NQS effect now needs to be applied to Qf,e only 
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HICUM Workshop Charge partitioning
Results
• simple physics-based approach, Qf,c = τBCITf, vs. general approach, Qf,c = fτhcQf 

1D device simulation                                 experimental results

• effect masked in experimental data by influence of RBCBE, CBC, NQS effect
=>  time constant difficult to extract from measured data 
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=> significant improvement => some improvement 

VBC = 0 V
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HICUM Workshop Charge partitioning
VBC dependence
Comparison for different VBC (1D device simulation)

• Both approaches reduce error significantly 

• General approach more easy to extract 

• Using τBC is more physics-based but requires also separation of τf0 
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HICUM Workshop Modeling the collector field
Modeling the collector field
• Goal: model QjCi (and wBC) by bias dependent electric field EjC at the BC-junction:

 =>       and     

=>  corresponding small-signal equivalent circuit
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HICUM Workshop Modeling the collector field
Brief review of bias dependent field

• Poisson eq. for low-bias electric field in collector:  with 

• Resulting field shape under different operating conditions (note change of field sign)
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HICUM Workshop Modeling the collector field
Modeling the electric field

• Poisson equation with current dependence: 

• simplified model for electron velocity: 

• solution:                      (valid only in SCR) 

with   and  

• Boundary condition from 

=>    (valid at all biases)
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HICUM Workshop Modeling the collector field
Compact collector field model 
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HICUM Workshop Modeling the collector field
Results
1D device simulation 

=> good results for y21, especially when combining with charge partitioning model 

• Issues to be solved yet
• numerical problems for JC > JCK still exist
• Different extraction method necessary, since dQjCi/diT is generally included in τf determina-

tion and parameter extraction

=> field model will allow to also include non-local effects and will be more predictive
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HICUM Workshop Conclusions
Conclusions
• Observations 

• 1D device simulation shows bias dependence and additional phase shift of Im{y21}
• measurements seem to show slightly larger y21 phase shift than model

• Discrepancies traced back to 
• current dependence of internal BC depletion charge QjCi and 
• lumping mobile charge in BC SCR into BE diffusion capacitance

• Physics-based modeling approach for both elements
• BC SCR charge portion of Qf was moved to the internal BC-branch
• current dependence of QjCi modeled via electric field in the collector

=> combining both approaches leads in very good results

• Further work necessary 
• field model to be made numerically smooth
• verify BC SCR charge model in BC branch for different technologies
• need parameter extraction method for determining QjCi(JC) and BC SCR charge
• couple field model to non-local avalanche breakdown and tunneling current calculation
 © AP, SL, MS 14
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