Modeling the collector related charge in SiGe-HBTs

A. Pawlak, S. Lehmann, P. Ehrlich, M. Schroter

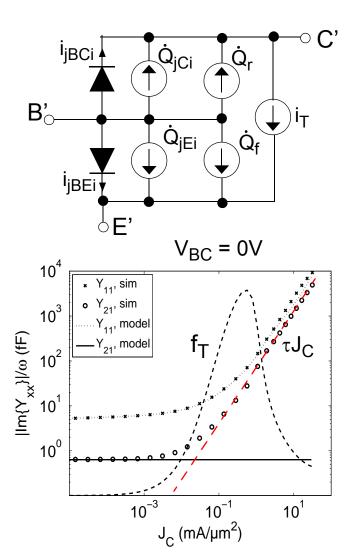
Chair for Electron Devices and Integrated Circuits (CEDIC)

TU Dresden, Germany

pawlak@iee.et.tu-dresden.de, steffen.lehmann@mailbox.tu-dresden.de http://www.iee.et.tu-dresden.de/iee/eb/eb_homee.html

12th HICUM Workshop, Newport Beach, CA (USA), 2012

Outline


- Introduction
- Analysis
- Charge partitioning
- Modeling the collector field
- Conclusions

HICUM Workshop

Introduction

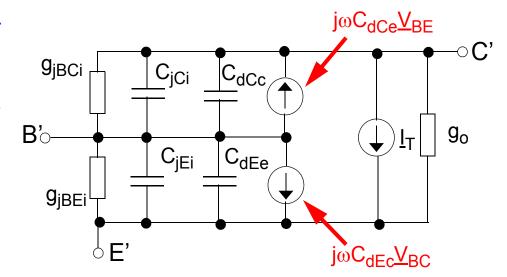
Introduction

- present version of HICUM
 - partitions total mobile charge Q_m into $Q_f(I_{Tf})$ and $Q_r(I_{Tr})$
 - assigns mobile charge Q_f(I_{Tf}) entirely to (internal) B'E' branch, although charge is distributed (1D)
- mobile charge partitioning from quasi-static considerations is arbitrary
 - => to be based on dynamic terminal currents (i.e. their phase shift)
- III-V HBT models often try to separate mobile charge into component for B'E' and B'C' branch
- observations:
 - 1D device simulation: at low forward bias, $|Im\{y_{21}\}|/\omega \sim J_C$ although Q_{iCi} depends only on $V_{B'C'}$
 - measurements: slightly larger phase shift in y₂₁
 - => cause of increase?

=> investigate necessity of charge "partitioning" and possible modeling options

HICUM Workshop

Analysis


Analysis

Taking the derivatives of Q_f and Q_r yields the capacitances:

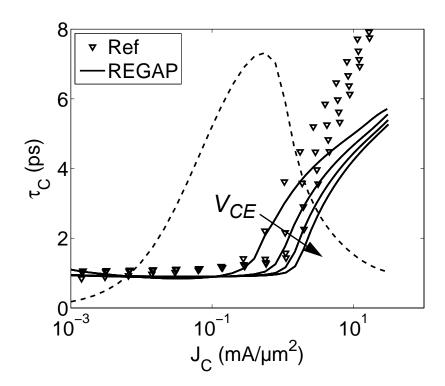
$$C_{dEe} = \left. \frac{dQ_f}{dV_{BE}} \right|_{V_{BC}}, \quad C_{dEc} = \left. \frac{dQ_f}{dV_{BC}} \right|_{V_{BE}}, \quad C_{dCe} = \left. \frac{dQ_r}{dV_{BE}} \right|_{V_{BC}}, \quad C_{dCc} = \left. \frac{dQ_r}{dV_{BC}} \right|_{V_{BE}}$$

=> possible 1D small-signal (HICUM) equivalent circuit

- "cross-coupled" capacitances represent charge controlled by other branch voltage
- \bullet Note: mobile charge in BC SCR affects both $\mathsf{Q}_{i\mathsf{C}i}$ and Q_{f}
 - => physics-based approach:
 - $Q_r \rightarrow Q_r + \tau_{BC}I_{Tf}$ includes mobile charge in BC SCR at low and medium bias
 - current dependence of C_{jCi} at medium and high current densities

=> is modification of these elements sufficient?

HICUM Workshop


Analysis

Corresponding transit time

• Calculation of transit time corresponding to increase of $Im\{y_{21}\}$.

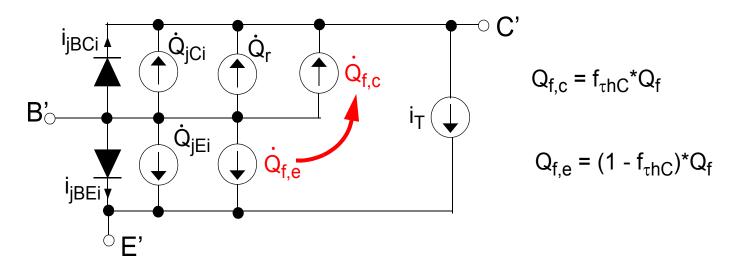
$$\tau_C = \left(\frac{\Im m(y_{21})}{\omega} - C_{jCi}(V_{BC})\right)/g_m \quad \text{with} \quad C_{jCi} = \lim_{I_T \to 0} \frac{\Im m(y_{21})}{\omega}.$$

• Comparison of 1D quasi-static transit times $\tau_C = \tau_{BC} + \tau_{pC}$ with $\tau = dQ_p/dI_C \big|_{V_{CE}}$

- Good agreement for not too high current densities
- In HICUM:

$$\tau_{pC} = f_{\tau hC} \tau_{fh}$$

and


$$\tau_{BC} = f_{\tau BC} \tau_{f0}$$

with unknown partitioning factor $f_{\tau BC}$ => difficult to extract

HICUM Workshop Charge partitioning

Charge partitioning

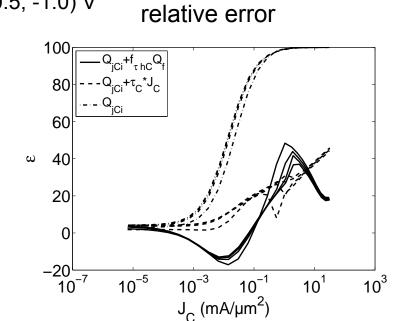
- difficulty to determine separate components in transit time and distinguish phase shift contributions from C_{BC} , R_BC_{BE} , NQS effect in y_{21} experimental data
- requirement for distributing charge to BE and BC branch:
 Total charge at B' node has to remain the same (=> accurate y₁₁ modeling)
 - => general and flexible approach: partitioning factor for Q_f

- => $Q_{f,c}$ leads to additional phase shift and bias dependence of y_{21}
- Note: NQS effect now needs to be applied to Q_{f,e} only

HICUM Workshop Charge partitioning

Results

• simple physics-based approach, $Q_{f,c}$ = $\tau_{BC}I_{Tf}$, vs. general approach, $Q_{f,c}$ = $f_{\tau hc}Q_f$


experimental results 1D device simulation $V_{BC} = 0 V$ 10⁴ 10⁴ Ref 。Y₂₁, meas 10³ $-Im\{Y_{21}\}\!/\!\omega \text{ (fF)}$ $|Im\{Y_{xx}\}|/\omega$ (fF) 10² 10⁰ 10⁻³ 10^{-7} 10⁰ 10⁻⁵ 10¹ 10³ 10² $J_C (mA/\mu m^2)$ $J_{C} (mA/\mu m^2)$ => significant improvement => some improvement

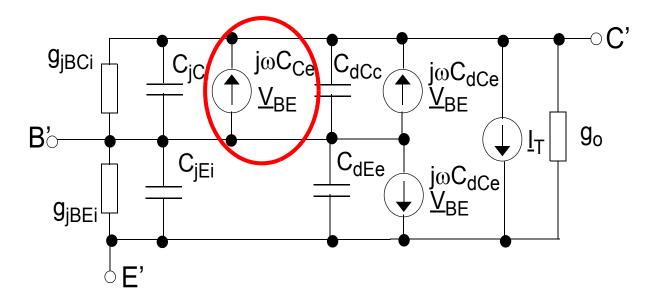
- effect masked in experimental data by influence of R_BC_{BE}, C_{BC}, NQS effect
 - => time constant difficult to extract from measured data

HICUM Workshop Charge partitioning

VBC dependence

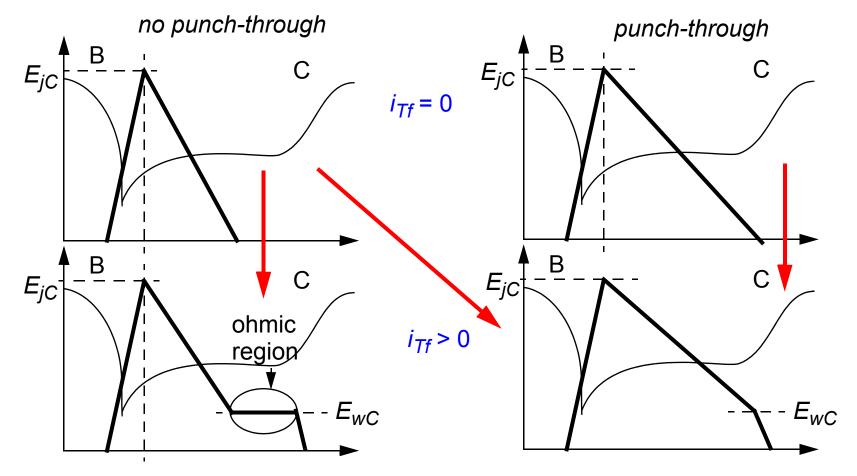
Comparison for different V_{BC} (1D device simulation)

- Both approaches reduce error significantly
- General approach more easy to extract
- Using τ_{BC} is more physics-based but requires also separation of τ_{f0}


Modeling the collector field

• Goal: model Q_{jCi} (and w_{BC}) by bias dependent electric field E_{jC} at the BC-junction:

$$Q_{BCi} = \varepsilon E_{jC}(V_{BCi}, i_{Tf})$$


$$=> C_{jCi} = \varepsilon \frac{dE_{jC}(V_{BCi}, i_{Tf})}{dV_{BCi}} \bigg|_{V_{B'E}} \quad \text{and} \quad C_{Ce} = \varepsilon \frac{dE_{jC}(V_{BCi}, i_{Tf})}{dV_{BEi}} \bigg|_{V_{B'C}}$$

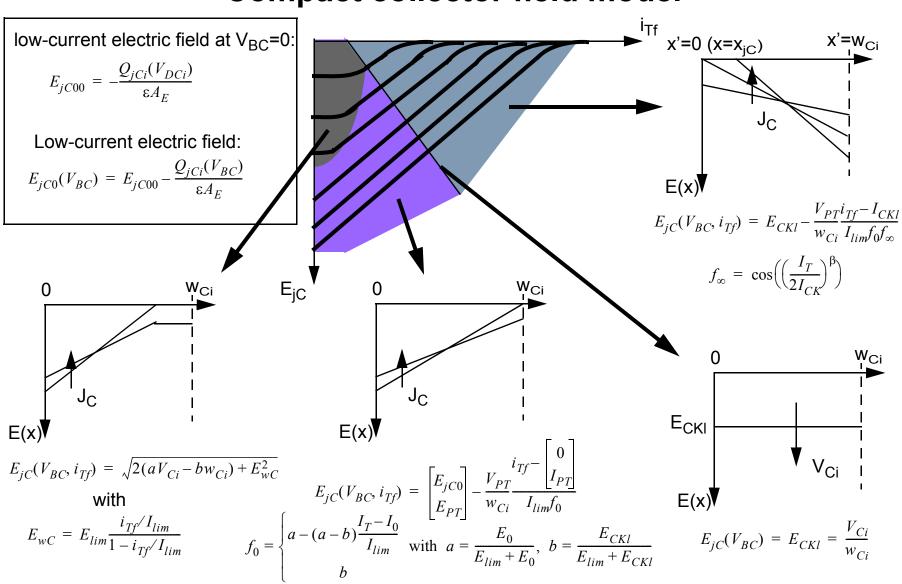
=> corresponding small-signal equivalent circuit

Brief review of bias dependent field

- Poisson eq. for low-bias electric field in collector: $\frac{dE}{dx} = \frac{q}{\epsilon}(N_{Ci} n)$ with $n = J_C/qv_c$
- Resulting field shape under different operating conditions (note change of field sign)

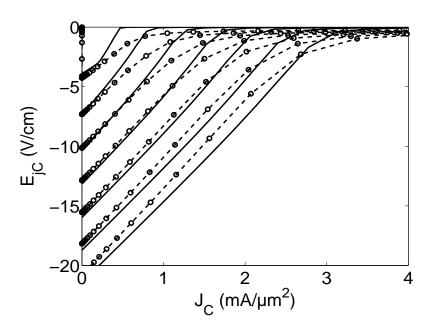
Modeling the electric field

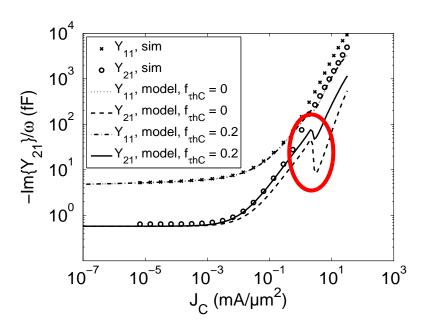
• Poisson equation with current dependence: $\frac{dE}{dx} = \frac{q}{\epsilon}(N_{Ci} - n) = \frac{q}{\epsilon}(N_{Ci} - \frac{J_T}{qv_n})$


- simplified model for electron velocity: $v_n = v_{sn} \frac{E}{E_{lim} + E}$
- solution: $\frac{E_{jC} E(x)}{a} \frac{b}{a^2} \ln \left(\frac{aE(x) b}{aE_{jC} b} \right) = x \text{ (valid only in SCR)}$

with
$$a=\frac{qN_{Ci}}{\varepsilon}\Big(1-\frac{J_T}{J_{lim}}\Big)$$
 and $b=\frac{qN_{Ci}}{\varepsilon}\frac{J_T}{J_{lim}}E_{lim}$

• Boundary condition from $V_{Ci} = -\int_0^{w_{Ci}} E(x)dx$


=>
$$V_{Ci} = \frac{1}{2a} (E_{jC}^2 - E_{wC}^2) + \frac{b}{a} w_{Ci}$$
 (valid at all biases)


Compact collector field model

Results

1D device simulation

=> good results for y_{21} , especially when combining with charge partitioning model

- Issues to be solved yet
 - numerical problems for $J_C > J_{CK}$ still exist
 - Different extraction method necessary, since dQ_{jCi}/di_T is generally included in τ_f determination and parameter extraction

=> field model will allow to also include non-local effects and will be more predictive

HICUM Workshop Conclusions

Conclusions

- Observations
 - 1D device simulation shows bias dependence and additional phase shift of $Im\{y_{21}\}$
 - measurements seem to show slightly larger y_{21} phase shift than model
- Discrepancies traced back to
 - current dependence of internal BC depletion charge Q_{iCi} and
 - lumping mobile charge in BC SCR into BE diffusion capacitance
- Physics-based modeling approach for both elements
 - BC SCR charge portion of Q_f was moved to the internal BC-branch
 - current dependence of Q_{iCi} modeled via electric field in the collector
 - => combining both approaches leads in very good results
- Further work necessary
 - field model to be made numerically smooth
 - verify BC SCR charge model in BC branch for different technologies
 - need parameter extraction method for determining $Q_{jCi}(J_C)$ and BC SCR charge
 - couple field model to non-local avalanche breakdown and tunneling current calculation