# **Compact Modeling of Process Variations**

H. Wittkopf, M. Schröter

Chair for Electron Devices and Integrated Circuits (CEDIC)

**Dept. of Electrical and Computer** Engin.

University of Technology Dresden, University of California at San Di-

mschroter@ieee.org

http://www.iee.et.tu-dresden.de/iee/eb/eb\_homee.html

12<sup>th</sup> HICUM Workshop, May 2012 Newport Beach, CA, USA

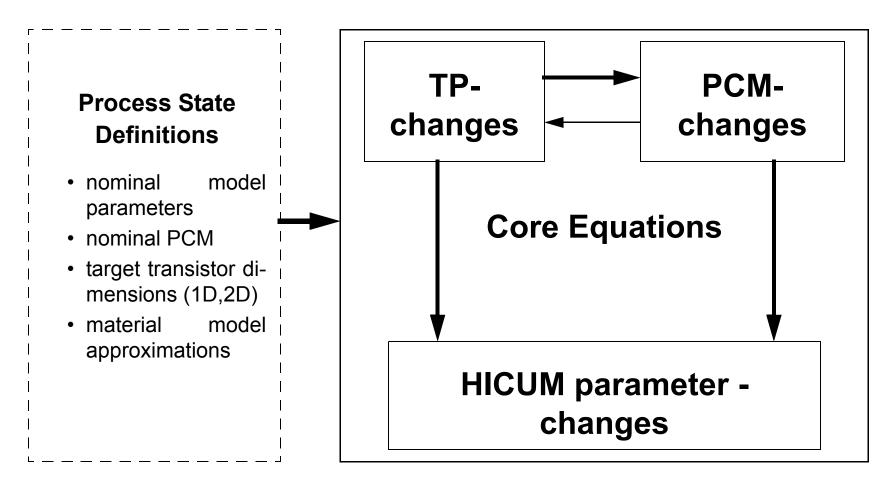
# **Outline**

- 1 Introduction
- 2 Predictive Modeling Core
- 3 System Overview
- 4 Parametric Model Card (PMC)
- 5 Example
- 6 Summary

#### Introduction

- Process variations related to fabrication equipment can not be modeled directly
  - epitaxial material concentration
  - activated doping concentration
  - etch solution concentration
  - lithographic variation
- Focus of research is on integrated SiGe HBT devices
  - Statistical process variations
  - Process shift after model parameter extraction
  - Process changes during further process development
- Methodologies are built around predictive modeling core equations
- changes of transistor structure and material composition are inputs for predictive modeling core equations

### **Predictive Modeling Core**



TP - Technology Parameter PCM - Process Control Monitor HICUM - HIgh CUrrent Model

# **Assumptions for predictive modeling**

#### Nominal process data calibrates modeling equations to given process

- HICUM parameters extracted using process-based scalable approach
- PCM data: single vector (predictive), distribution (statistical)
- use material models associated with process technology
- improve calibration to process by using doping profile and device simulation

#### **Application modes**

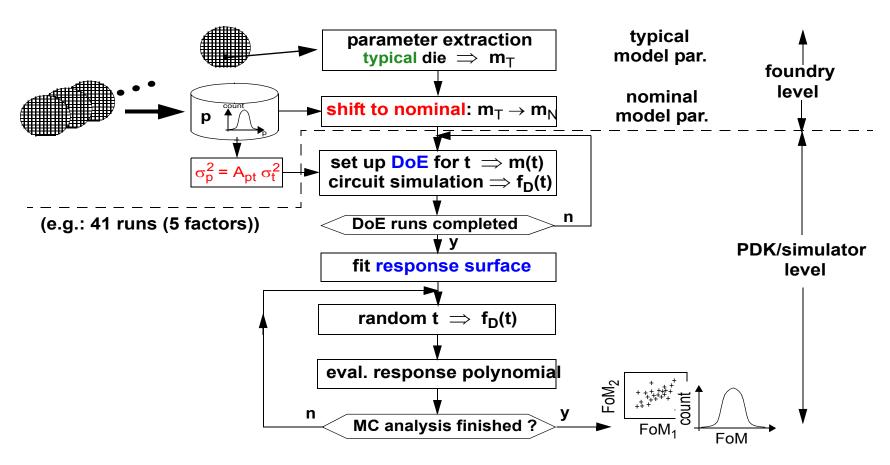
- PCM changes can be calculated from TP changes by forward application of predictive modeling core equations
- Using backward application TP-changes can be calculated from PCM changes
   requires highly accurate representation of PCM(TP)

# **Most important TP and PCM**

- Technology Parameters (TP)
  - (neutral) region widths for collector, base and emitters (w<sub>E</sub>, w<sub>B</sub>, w<sub>C</sub>)
  - doping density of collector, base and emitter (N<sub>E</sub>, N<sub>B</sub>, N<sub>C</sub>)
  - transistors dimensions, especially for emitter window ( $b_{E0}$ ,  $I_{E0}$ )
  - Germanium concentration in SiGe base (c<sub>Ge</sub>)
- Process Control Monitors (PCM)
  - zero-bias internal sheet resistance (R<sub>SBi0</sub>)
  - area-specific zero-bias base emitter and base collector capacitance (C<sub>jEi0</sub>, C<sub>jCi0</sub>)
  - area-specific base-collector punch-through capacitance  $(C_{jC,PT})$
  - area-specific Collector current at low current densities (I<sub>C,low</sub>)
  - forward current gain at low current densities (B<sub>f,low</sub>)
  - sheet resistances and area-specific depletion capacitances of external transistor regions

### **System Overview**

statistical modeling procedure using response surface method (RSM) and design of experiment (DoE)



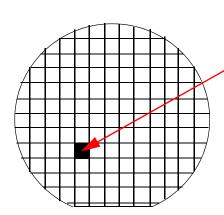
=> this system is provided by TRADICA

# Physics- and PCM-based method: flowchart

- use process-control monitor (PCM) data directly from fab
- utilize physics-based compact models: m(p(t), t)
  - ⇒ procedure for statistical model set-up



#### Step 1: Process development phase

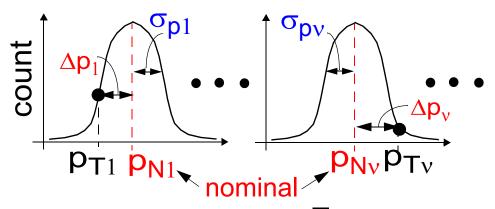


- extraction on single die with typical device characteristics
  - $\Rightarrow$  consistent sets:  $\mathbf{s}_{T}$  ( $\mathbf{p}_{T}$ ),  $\mathbf{d}_{T}$   $\Rightarrow$   $\mathbf{m}_{T}$
- no statistical information available yet
  - $\Rightarrow$  need to predict statistical variations of **m** from  $\Delta$ **t** (can use known process information)
- ⇒ statistics are centered around the *typical* data set

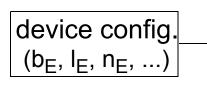
# PCM based method - Step 2

#### process qual stage $\Rightarrow$ first production parameter set

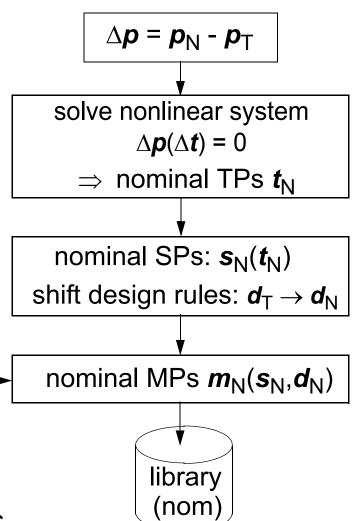
first set of consistent PCM measurements



- $\Rightarrow$  mean vector  $\mathbf{p}_{N} = \mathbf{p}$ 
  - ⇒ shift typical to nominal data



- $\Rightarrow$  standard deviation vector  $\sigma_p$ 
  - ⇒ determine **standard deviation** of TPs



### PCM based method - Step 3

process qual stage ⇒ statistical parameter sets

• assume sufficiently small variations  $\Rightarrow$  can use *propagation of variances* 

$$\begin{bmatrix} \dots \\ \sigma_{p,\,\nu}^2 \\ \sigma_{p,\,\nu+1}^2 \\ \dots \end{bmatrix} = \begin{bmatrix} \dots & \dots & \dots & \dots \\ \dots & \left(\frac{\partial p_{\nu}}{\partial t_{\nu}}\right)^2 & \left(\frac{\partial p_{\nu}}{\partial t_{\nu+1}}\right)^2 & \dots \\ \dots & \left(\frac{\partial p_{\nu+1}}{\partial t_{\nu}}\right)^2 & \left(\frac{\partial p_{\nu+1}}{\partial t_{\nu+1}}\right)^2 & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix} \begin{bmatrix} \dots \\ \sigma_{t,\,\nu}^2 \\ \sigma_{t,\,\nu+1}^2 \\ \dots & \dots & \dots \end{bmatrix} \Rightarrow \text{solve for } \sigma_t^2$$

$$\text{measured} \qquad \text{known from model} \qquad \text{desired}$$

- ⇒ statistical production *model* now ready to be deployed
- ... but still need to define statistical *simulation* procedure

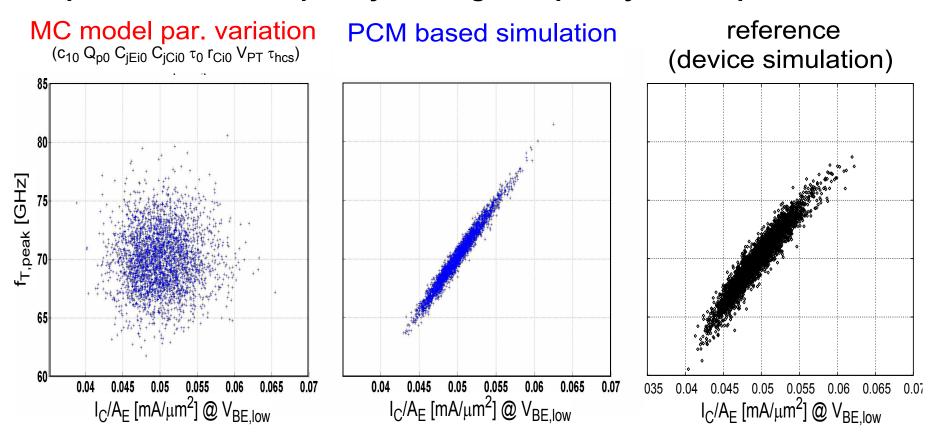
#### **Relation between TPs and PCMs**

full matrix for **p** vs. **t** dependence

| $p \downarrow \ \ t \rightarrow$ | N <sub>B</sub> | w <sub>B</sub> | N <sub>Ci</sub> | $\delta V_{\text{gm}}$ | b <sub>E0</sub> | J <sub>BEiS</sub> | $\rho_{kE}$ | w <sub>E</sub> | N <sub>E</sub> | w <sub>C</sub> | N <sub>Cx</sub> | N <sub>Bs</sub> | N <sub>bl</sub> | N <sub>su</sub> |
|----------------------------------|----------------|----------------|-----------------|------------------------|-----------------|-------------------|-------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| R <sub>SBi0</sub>                | XXX            | ХХ             | (x)             | -                      | (x)             | -                 | -           | -              | -              | 1              | -               | 1               | 1               | _               |
| C <sub>jE0</sub>                 | XXX            | -              | -               | X                      | XX              | -                 | -           | ууу            | ууу            | -              | -               | -               | -               | _               |
| C <sub>jCi0</sub>                | (x)            | -              | XXX             | X                      | -               | -                 | -           | -              | -              | -              | -               | -               | -               | _               |
| I <sub>C,low</sub>               | XXX            | ХХ             | (x)             | XXX                    | XX              | -                 | -           | -              | -              | -              | -               | -               | -               | -               |
| I <sub>B,low</sub>               | -              | -              | -               | -                      | XX              | xxx               | (xx)        | -              | -              | -              | -               | -               | -               | _               |
| $B_{f,low}$                      | XXX            | XX             | (x)             | XXX                    | X               | XXX               | (xx)        | -              | -              | -              | -               | -               | -               | _               |
| R <sub>E</sub>                   | -              | -              | -               | -                      | -               | -                 | XXX         | у              | у              | -              | -               | -               | -               | -               |
| C <sub>jCi,PT</sub>              | -              | -              | -               | -                      | -               | -                 | -           | -              | -              | xxx            | -               | -               | -               | -               |
| C <sub>jCb0</sub>                | -              | -              | -               | -                      | -               | -                 | -           | -              | -              | -              | xxx             | -               | -               | -               |
| R <sub>Ssp</sub>                 | -              | -              | -               | -                      | -               | -                 | -           | -              | -              | -              | -               | xxx             | -               | -               |
| R <sub>Sbl</sub>                 | -              | -              | -               | -                      | -               | -                 | -           | -              | -              | -              | -               | _               | xxx             | -               |
| ρ <sub>su</sub>                  | -              | -              | -               | -                      | -               | -                 | -           | -              | -              | -              | -               | -               | -               | xxx             |

- internal transistor: mostly nonlinear, correlated parameters
- external transistor: mostly simple uncorrelated relations (e.g. R = R<sub>S</sub> \* b/l)
- do not need to use *all* components of **t** for a given application

# Do's and Don'ts of statistical simulation random variation of different parameter types impact on transit frequency and high-frequency device performance



⇒ correct correlation only from physics-based approach

# Parametric Model Card (PMC)

# PMCs (a.k.a. statistical model cards) are often used as simple approaches for statistical modeling and simulation

• built-in statistical algorithms of circuit simulators are employed by expressing model parameters m as function of varying process parameters  $\Delta p$ :

$$\boldsymbol{m} = \boldsymbol{m}_0 + \sum_j a_j \Delta p_j + \sum_j b_j \Delta p_j^2 + \dots$$

- **m**<sub>0</sub>: nominal model parameter vector
- $a_{i,j}$ ,  $b_{i,j}$ : statistical model coefficients
- ${\it p}$ : mostly process control monitors and dimensions (e.g.  $b_{E0}$ ,  $I_{E0}$ ) for scaling and matching

#### **Example for PMC**

#### general issues with PMCs

- polynomials are mostly non-physical => coefficients are fit parameters
- polynomials do not capture true dependence m(p), especially over larger variation ranges
- higher order polynomials may include minima and maxima both within and outside of target variation range => non-physical and dangerous for yield optimization

### PMC generation from measured data

#### Procedure

- choose sufficiently high number of samples (fully characterized dies with transistor parameters and known PCMs)
- define and determine process parameters p => independent variables
- perform model parameter extraction for every sample
- build regression model for every model parameter m(p)

#### Advantages

· directly from measured data may increase confidence

#### Issues

- model parameter extraction impacted by process variations, measurement errors, numerical optimization errors
  - => superposition of undesired variations causes additional model parameter scattering
  - => more samples required
- model parameter extraction requires large effort (incl. detailed measurements)
- limited use of DoE methods, rather: take as many data for linear, quadratic or higher order regression as possible
- independent variables are mostly PCMs => correlated => to be determ. by measurements
- · correlations are difficult to include in circuit simulators

# PMC generation with the aid of device simulation

#### Procedure

- model parameter extraction for nominal device
- build 1D/2D doping profile for nominal transistor
- simulate systematic process variations (DoE) to obtain data base for regression
- perform parameter extraction for each selected process variation
- Build regression model for every model parameter

#### Advantages

- significantly lowers the effort for extensive measurements and model parameter extraction
- regression model is now based on TP

#### Issues

- need at least 1D profile (2D profile and process calibrated material models are a plus)
- model parameters scatter after extraction
- process variations used within DoE probably not conform with real process

# PMC Generation from physics-based approach ... using TRADICA

#### Procedure

- Complete process characterization for use in TRADICA
- Generating parametric model card with built in methods

#### Advantages

- regression model is now based on TP
- back propagation of variance makes DoE within TRADICA agree with that of real process
- takes in-line PCMs directly => no additional cost

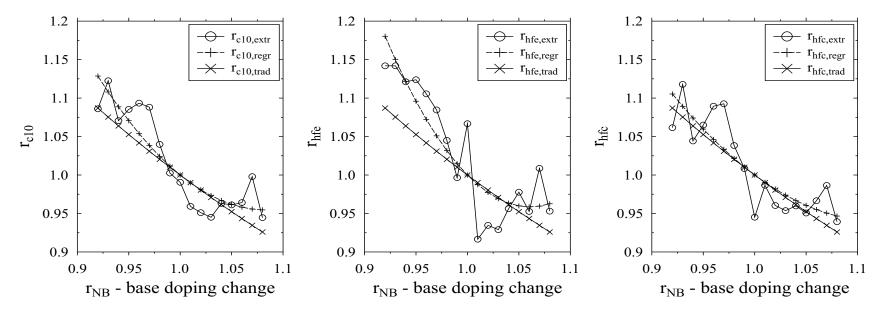
#### Issues

 general disadvantages of PMC (possibly non monotonously second order functions) still remain

#### **PMC Example**

#### ...based on device simulation => ideal environment

model parameter ratios vs. base doping ratio: according to model equations, variation should be the same for shown parameters



- observations
  - non-physical minima in second-order model parameter equation possible
  - scattered extraction results (increase sample number necessary for regression)

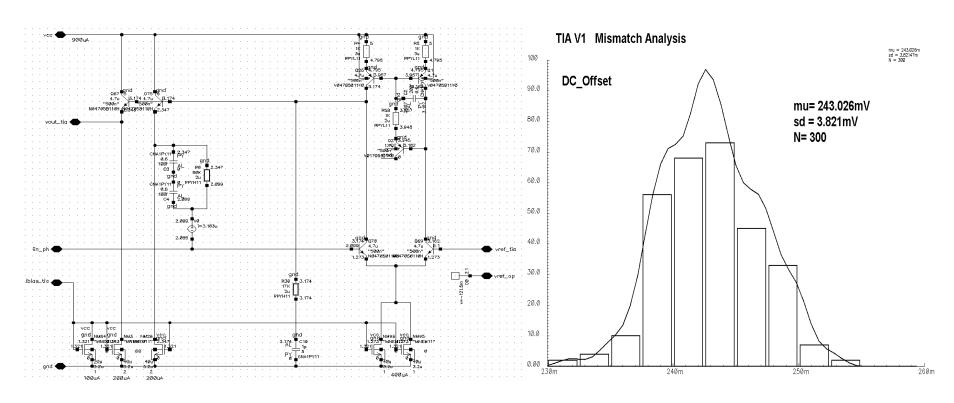
#### => extraction-based PMC generation is inferior solution

# Comparison of modeling process variations

| TRADICA                                                                                                     | PMC from extraction                                                                                                               |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| physics-based predictive modeling equations                                                                 | non-physical polynomial equation for every model parameter                                                                        |
| calibration to process due to nominal HI-CUM parameters and measured PCM                                    | Calibration using coefficients within polynomial => includes also artefacts of model parameter extraction                         |
| can select uncorrelated device parameters and dimensions as independent variables                           | selected independent variables are most-<br>ly correlated<br>=> contradiction to statistical circuit simu-<br>lation requirements |
| integrated in PDK preferable;<br>can be used with built-in statistical capa-<br>bility of circuit simulator | limited to use of built-in statistical capabil-<br>ity of circuit simulator                                                       |

### **Example**

# Atmel (Telefunken) presented at DATE2007 a successful implementation of TRADICA in their Design Frame Work (DFW)



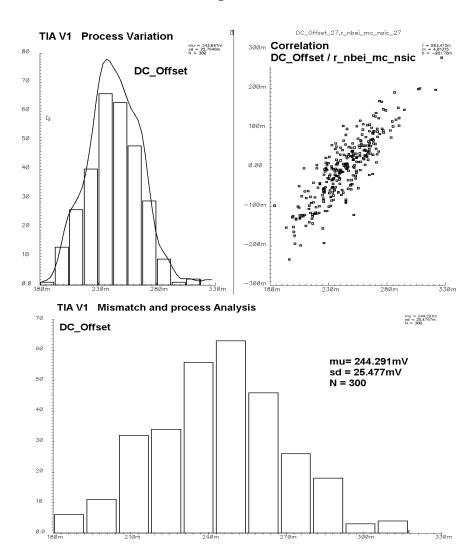
- low-cost amplifier, high-volume production => yield is critical economic factor
- mismatch (only) analysis => 243 mV offset voltage, 3.8 mV standard deviation

# **Analysis of Process Tolerance Impact**

 sensitivity analysis using 300 MC simulations to identify TPs of highest impact

# => internal base doping has highest impact

- combined analysis using lateral (i.e. incl. mismatch) and vertical process variation show offset mean of 244.3 mV with a standard deviation of 25.5 mV
- offset increased because of additional consideration of vertical transistor variations

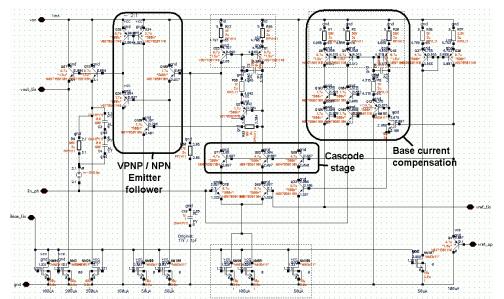


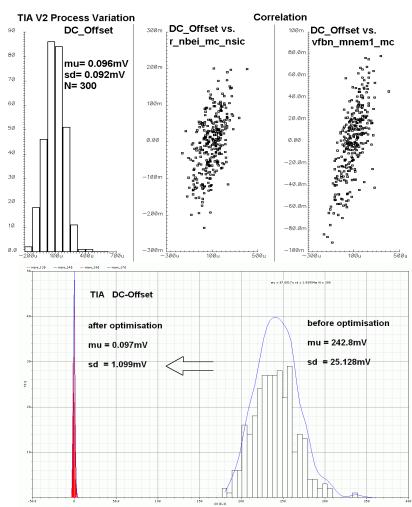
=> TRADICA based sensitivity analysis reproduces measured data

# Results for redesigned circuit

- compensation circuits added
- optimization supported by TRADICA
- offset mean reduction from 243mV to 0.1mV
- offset std reduction from 25.1mV to 1.1mV

#### => experimentally verified!





=> procedure has been used at Atmel (now Telefunken) for generating statistical models in their PDKs

#### **Summary**

#### various approaches existing for modeling of process variations

- MC simulation of model parameters => simple but bad idea (no correlation)
- parametric model cards (often found approach)
  - discussed alternatives for generating PMCs
  - issues were pointed out
    - => inferior solution to fully physics-based approach

#### process-based scalable (physics-based) approach

- includes smooth and accurate dependence of model parameters on process parameters
- includes correlation between model parameters,
- enables analysis of device matching

future trend: expect increasing process variations

=> proper statistical modeling will improve circuit yield