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Compact Modeling for production-type circuit design Introduction
Introduction

• Process variations related to fabrication equipment can not be modeled directly
• epitaxial material concentration
• activated doping concentration
• etch solution concentration
• lithographic variation

• Focus of research is on integrated SiGe HBT devices 
• Statistical process variations
• Process shift after model parameter extraction
• Process changes during further process development

• Methodologies are built around predictive modeling core equations

• changes of transistor structure and material composition are inputs for predic-
tive modeling core equations
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Compact Modeling for production-type circuit design Predictive Modeling Core
Predictive Modeling Core

TP-
changes

PCM-
changes

HICUM parameter - 
changes

Process State 
Definitions

• nominal model 
parameters

• nominal PCM
• target transistor di-

mensions (1D,2D)
• material model 

approximations

Core Equations

TP - Technology Parameter
PCM - Process Control Monitor
HICUM - HIgh CUrrent Model
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Compact Modeling for production-type circuit design Predictive Modeling Core
Assumptions for predictive modeling

Nominal process data calibrates modeling equations to given process
• HICUM parameters extracted using process-based scalable approach

• PCM data: single vector (predictive), distribution (statistical) 

• use material models associated with process technology

• improve calibration to process by using doping profile and device simulation 

Application modes 
• PCM changes can be calculated from TP changes by forward application of predic-

tive modeling core equations

• Using backward application TP-changes can be calculated from PCM changes 
=> requires highly accurate representation of PCM(TP)
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Compact Modeling for production-type circuit design Predictive Modeling Core
Most important TP and PCM

• Technology Parameters (TP)
• (neutral) region widths for collector, base and emitters (wE, wB, wC)  
• doping density of collector, base and emitter (NE, NB, NC) 
• transistors dimensions, especially for emitter window (bE0, lE0)
• Germanium concentration in SiGe base (cGe)

• Process Control Monitors (PCM)
• zero-bias internal sheet resistance (RSBi0)
• area-specific zero-bias base emitter and base collector capacitance (CjEi0, CjCi0)
• area-specific base-collector punch-through capacitance (CjC,PT)
• area-specific Collector current at low current densities (IC,low)  
• forward current gain at low current densities (Bf,low)
• sheet resistances and area-specific depletion capacitances of external transistor regions
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Compact Modeling for production-type circuit design System Overview
System Overview
statistical modeling procedure using response surface method (RSM) 

and design of experiment (DoE)
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=>  this system is provided by TRADICA
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Compact Modeling for production-type circuit design System Overview
Physics- and PCM-based method: flowchart
• use process-control monitor (PCM) data directly from fab

• utilize physics-based compact models:  m(p(t), t)

⇒   procedure for statistical model set-up ⇒

Step 1: Process development phase
• extraction on single die with typical device characteristics

   ⇒   consistent sets:  sT (pT), dT  ⇒   mT 

• no statistical information available yet

   ⇒   need to predict statistical variations of m from Δt  
          (can use known process information) 

 ⇒  statistics are centered around the typical data set 
 © MS 8



Compact Modeling for production-type circuit design System Overview
PCM based method - Step 2
process qual stage  ⇒  first production parameter set

co
un

t

pN1pT1 pNν

σp1

pTν
  ⇒  nominal TPs tN

library

Δp = pN - pT

device config.
(bE, lE, nE, ...)

Δpν

Δp1

nominal

(nom)

solve nonlinear system
Δp(Δt) = 0

nominal SPs: sN(tN)

nominal MPs mN(sN,dN)

shift design rules: dT → dN

first set of consistent PCM measurements

mean vector  pN = p 

σpν

⇒ shift typical to nominal data

standard deviation vector σp 

⇒

⇒
⇒ determine standard deviation of TPs
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Compact Modeling for production-type circuit design System Overview
PCM based method - Step 3
process qual stage   ⇒   statistical parameter sets 

• assume sufficiently small variations   ⇒  can use propagation of variances
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⎛ ⎞ 2

…

… … … …

…

σt ν,
2

σt ν 1+,
2

…

= ⇒ solve for σt
2

measured known from model desired
⇒  statistical production model now ready to be deployed
... but still need to define statistical simulation procedure 
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Compact Modeling for production-type circuit design System Overview
Relation between TPs and PCMs 
                                            full matrix for p vs. t dependence
 

p ↓ \ t → NB wB NCi δVgm bE0 JBEiS ρkE wE NE wC NCx NBs Nbl Nsu 

RSBi0 xxx xx    (x) - (x) - - - - - - - - -
CjE0 xxx -     - x xx - - yyy yyy - - - - -
CjCi0 (x) -    xxx x - - - - - - - - - -
IC,low  xxx xx    (x)  xxx  xx - - - - - - - - -
IB,low - - - - xx xxx (xx) - - - - - - -
Bf,low xxx xx      (x) xxx x xxx (xx) - - - - - - -
RE - - - - - - xxx y y - - - - -

CjCi,PT - - - - - - - - - xxx - - - -
CjCb0 - - - - - - - - - - xxx - - -
RSsp - - - - - - - - - - - xxx    - -
RSbl - - - - - - - - - - - - xxx -
ρsu - - - - - - - - - - - - - xxx

• internal transistor: mostly nonlinear, correlated parameters
• external transistor: mostly simple uncorrelated relations (e.g. R = RS * b/l) 
• do not need to use all components of t for a given application 
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Compact Modeling for production-type circuit design System Overview
Do’s and Don’ts of statistical simulation 
random variation of different parameter types 

impact on transit frequency and high-frequency device performance 
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Compact Modeling for production-type circuit design Parametric Model Card (PMC)
Parametric Model Card (PMC) 

PMCs (a.k.a. statistical model cards) are often used as simple approach-
es for statistical modeling and simulation

• built-in statistical algorithms of circuit simulators are employed by expressing model 
parameters m as function of varying process parameters Δp:

m m0 ajΔpj
j

∑ bjΔp2
j …+

j
∑+ +=

• m0: nominal model parameter vector

• ai j, , bi j, : statistical model coefficients

• p: mostly process control monitors and dimensions (e.g. bE0, lE0) for scaling and 
matching  
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Compact Modeling for production-type circuit design Parametric Model Card (PMC)
Example for PMC

* HICUM/Level2    v2.2                                                     TRADICA A5.4
.SUBCKT P030401S02_01   3   2   1   9

parameters
 + b_e0 =0.350E-06    l_e0 =0.400E-05
 + r_nbei_l = r_nbei_rm_std*r_nbei_sm_std/sqrt(b_e0*l_e0)
 + r_nbei   = r_nbei_g_std+r_nbei_l
 :
 + a_be0_l = a_be0_rm_std*a_be0_sm_std/sqrt(l_e0)
 + a_be0    = a_be0_g_std+a_be0_l

Q     3   2   1   9  MOD
.model MOD  PNP level=9  TNOM= 26.85  version=2.2 
 + c10 = 3.136E-29 + 1.403E-29*r_nbei + 1.345E-22*a_be0 + 1.441E-16*a_be0*a_be0 + ...
 + qp0 = 3.826E-14 + 3.826E-14*r_nbei + 3.826E-14*r_wb + 8.200E-08*a_be0 + 9.330E-09*a_le0
 :
 + cjei0 = 1.977E-14 + 5.253E-15*r_nbei + 1.201E-14*a_vgm + 4.237E-08*a_be0 + 4.821E-09*a_le0
 :

• general issues with PMCs 
• polynomials are mostly non-physical  =>  coefficients are fit parameters 
• polynomials do not capture true dependence m(p), especially over larger variation ranges
• higher order polynomials may include minima and maxima both within and outside of target 

variation range  =>  non-physical and dangerous for yield optimization 
 © MS 14



Compact Modeling for production-type circuit design Parametric Model Card (PMC)
PMC generation from measured data 
• Procedure

• choose sufficiently high number of samples (fully characterized dies with transistor parame-
ters and known PCMs)

• define and determine process parameters p  =>  independent variables
• perform model parameter extraction for every sample
• build regression model for every model parameter m(p) 

• Advantages 
• directly from measured data may increase confidence

• Issues
• model parameter extraction impacted by process variations, measurement errors, numerical 

optimization errors  
 => superposition of undesired variations causes additional model parameter scattering 
=>  more samples required

• model parameter extraction requires large effort (incl. detailed measurements)
• limited use of DoE methods, rather: take as many data for linear, quadratic or higher order 

regression as possible
• independent variables are mostly PCMs => correlated => to be determ. by measurements
• correlations are difficult to include in circuit simulators 
 © MS 15



Compact Modeling for production-type circuit design Parametric Model Card (PMC)
PMC generation with the aid of device simulation

• Procedure
• model parameter extraction for nominal device
• build 1D/2D doping profile for nominal transistor
• simulate systematic process variations (DoE) to obtain data base for regression
• perform parameter extraction for each selected process variation
• Build regression model for every model parameter

• Advantages 
• significantly lowers the effort for extensive measurements and model parameter extraction
• regression model is now based on TP

• Issues 
• need at least 1D profile (2D profile and process calibrated material models are a plus)
• model parameters scatter after extraction
• process variations used within DoE probably not conform with real process
 © MS 16



Compact Modeling for production-type circuit design Parametric Model Card (PMC)
PMC Generation from physics-based approach
... using TRADICA

• Procedure
• Complete process characterization for use in TRADICA
• Generating parametric model card with built in methods

• Advantages
• regression model is now based on TP
• back propagation of variance makes DoE within TRADICA agree with that of real process
• takes in-line PCMs directly  =>  no additional cost 

• Issues
• general disadvantages of PMC (possibly non monotonously second order functions) still 

remain
 © MS 17



Compact Modeling for production-type circuit design Parametric Model Card (PMC)
PMC Example
...based on device simulation  =>  ideal environment

• model parameter ratios vs. base doping ratio: according to model equations, varia-
tion should be the same for shown parameters  
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• observations
• non-physical minima in second-order model parameter equation possible
• scattered extraction results (increase sample number necessary for regression)

=> extraction-based PMC generation is inferior solution 
 © MS 18



Compact Modeling for production-type circuit design Parametric Model Card (PMC)
Comparison of modeling process variations

TRADICA PMC from extraction 
physics-based predictive modeling equa-
tions

non-physical polynomial equation for ev-
ery model parameter

calibration to process due to nominal HI-
CUM parameters and measured PCM

Calibration using coefficients within poly-
nomial => includes also artefacts of mod-
el parameter extraction 

can select uncorrelated device parame-
ters and dimensions as independent vari-
ables 

selected independent variables are most-
ly correlated 
=> contradiction to statistical circuit simu-
lation requirements

integrated in PDK preferable; 
can be used with built-in statistical capa-
bility of circuit simulator

limited to use of built-in statistical capabil-
ity of circuit simulator
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Compact Modeling for production-type circuit design Example
Example
Atmel (Telefunken) presented at DATE2007 a successful implementation 

of TRADICA in their Design Frame Work (DFW) 

• low-cost amplifier, high-volume production  => yield is critical economic factor  

• mismatch (only) analysis  => 243 mV offset voltage, 3.8 mV standard deviation
 © MS 20



Compact Modeling for production-type circuit design Example

•

Analysis of Process Tolerance Impact
• sensitivity analysis using 300 MC simula-

tions to identify TPs of highest impact

=> internal base doping has highest 
impact

• combined analysis using lateral (i.e. incl. 
mismatch) and vertical process variation 
show offset mean of 244.3 mV with a 
standard deviation of 25.5 mV

offset increased because of additional 
consideration of vertical transistor varia-
tions

=>  TRADICA based sensitivity analysis reproduces measured data  
 © MS 21



Compact Modeling for production-type circuit design Example
Results for redesigned circuit 
• compensation circuits added

• optimization supported by TRADICA

• offset mean reduction from 243mV  to  0.1mV

• offset std reduction from 25.1mV to 1.1mV

=> experimentally verified!

=> procedure has been used at Atmel (now Telefunken) for generating 
statistical models in their PDKs
 © MS 22



Compact Modeling for production-type circuit design Summary
Summary
various approaches existing for modeling of process variations

• MC simulation of model parameters   =>  simple but bad idea (no correlation)

• parametric model cards (often found approach)
• discussed alternatives for generating PMCs 
• issues were pointed out

      =>  inferior solution to fully physics-based approach

process-based scalable (physics-based) approach
• includes smooth and accurate dependence of model parameters on process param-

eters

• includes correlation between model parameters, 

• enables analysis of device matching 

future trend: expect increasing process variations 
=> proper statistical modeling will improve circuit yield 
 © MS 23
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	Introduction
	• Process variations related to fabrication equipment can not be modeled directly
	• epitaxial material concentration
	• activated doping concentration
	• etch solution concentration
	• lithographic variation

	• Focus of research is on integrated SiGe HBT devices
	• Statistical process variations
	• Process shift after model parameter extraction
	• Process changes during further process development

	• Methodologies are built around predictive modeling core equations
	• changes of transistor structure and material composition are inputs for predictive modeling core equations

	Predictive Modeling Core
	TP- changes
	TP - Technology Parameter
	PCM - Process Control Monitor
	HICUM - HIgh CUrrent Model

	Assumptions for predictive modeling
	Nominal process data calibrates modeling equations to given process
	• HICUM parameters extracted using process-based scalable approach
	• PCM data: single vector (predictive), distribution (statistical)
	• use material models associated with process technology
	• improve calibration to process by using doping profile and device simulation

	Application modes
	• PCM changes can be calculated from TP changes by forward application of predictive modeling core equations
	• Using backward application TP-changes can be calculated from PCM changes => requires highly accurate representation of PCM(TP)


	Most important TP and PCM
	• Technology Parameters (TP)
	• (neutral) region widths for collector, base and emitters (wE, wB, wC)
	• doping density of collector, base and emitter (NE, NB, NC)
	• transistors dimensions, especially for emitter window (bE0, lE0)
	• Germanium concentration in SiGe base (cGe)

	• Process Control Monitors (PCM)
	• zero-bias internal sheet resistance (RSBi0)
	• area-specific zero-bias base emitter and base collector capacitance (CjEi0, CjCi0)
	• area-specific base-collector punch-through capacitance (CjC,PT)
	• area-specific Collector current at low current densities (IC,low)
	• forward current gain at low current densities (Bf,low)
	• sheet resistances and area-specific depletion capacitances of external transistor regions


	System Overview
	statistical modeling procedure using response surface method (RSM) and design of experiment (DoE)
	=> this system is provided by TRADICA

	Physics- and PCM-based method: flowchart
	• use process-control monitor (PCM) data directly from fab
	• utilize physics-based compact models: m(p(t), t)
	Þ procedure for statistical model set-up
	Step 1: Process development phase
	• extraction on single die with typical device characteristics
	Þ consistent sets: sT (pT), dT Þ mT
	• no statistical information available yet

	Þ need to predict statistical variations of m from Dt (can use known process information)

	Þ statistics are centered around the typical data set

	PCM based method - Step 2
	process qual stage Þ first production parameter set

	PCM based method - Step 3
	process qual stage Þ statistical parameter sets
	• assume sufficiently small variations Þ can use propagation of variances

	Þ statistical production model now ready to be deployed
	... but still need to define statistical simulation procedure

	Relation between TPs and PCMs
	full matrix for p vs. t dependence
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	• internal transistor: mostly nonlinear, correlated parameters
	• external transistor: mostly simple uncorrelated relations (e.g. R = RS * b/l)
	• do not need to use all components of t for a given application



	Do’s and Don’ts of statistical simulation
	random variation of different parameter types
	impact on transit frequency and high-frequency device performance
	Þ correct correlation only from physics-based approach

	Parametric Model Card (PMC)
	PMCs (a.k.a. statistical model cards) are often used as simple approaches for statistical modeling and simulation
	• built-in statistical algorithms of circuit simulators are employed by expressing model parameters m as function of varying process parameters Dp:
	• m0: nominal model parameter vector
	• , : statistical model coefficients
	• p: mostly process control monitors and dimensions (e.g. bE0, lE0) for scaling and matching


	Example for PMC
	• general issues with PMCs
	• polynomials are mostly non-physical => coefficients are fit parameters
	• polynomials do not capture true dependence m(p), especially over larger variation ranges
	• higher order polynomials may include minima and maxima both within and outside of target variation range => non-physical and dangerous for yield optimization


	PMC generation from measured data
	• Procedure
	• choose sufficiently high number of samples (fully characterized dies with transistor parameters and known PCMs)
	• define and determine process parameters p => independent variables
	• perform model parameter extraction for every sample
	• build regression model for every model parameter m(p)

	• Advantages
	• directly from measured data may increase confidence

	• Issues
	• model parameter extraction impacted by process variations, measurement errors, numerical optimization errors => superposition of undesired variations causes additional model parameter scattering => more samples required
	• model parameter extraction requires large effort (incl. detailed measurements)
	• limited use of DoE methods, rather: take as many data for linear, quadratic or higher order regression as possible
	• independent variables are mostly PCMs => correlated => to be determ. by measurements
	• correlations are difficult to include in circuit simulators


	PMC generation with the aid of device simulation
	• Procedure
	• model parameter extraction for nominal device
	• build 1D/2D doping profile for nominal transistor
	• simulate systematic process variations (DoE) to obtain data base for regression
	• perform parameter extraction for each selected process variation
	• Build regression model for every model parameter

	• Advantages
	• significantly lowers the effort for extensive measurements and model parameter extraction
	• regression model is now based on TP

	• Issues
	• need at least 1D profile (2D profile and process calibrated material models are a plus)
	• model parameters scatter after extraction
	• process variations used within DoE probably not conform with real process


	PMC Generation from physics-based approach
	... using TRADICA
	• Procedure
	• Complete process characterization for use in TRADICA
	• Generating parametric model card with built in methods

	• Advantages
	• regression model is now based on TP
	• back propagation of variance makes DoE within TRADICA agree with that of real process
	• takes in-line PCMs directly => no additional cost

	• Issues
	• general disadvantages of PMC (possibly non monotonously second order functions) still remain



	PMC Example
	...based on device simulation => ideal environment
	• model parameter ratios vs. base doping ratio: according to model equations, variation should be the same for shown parameters
	• observations
	• non-physical minima in second-order model parameter equation possible
	• scattered extraction results (increase sample number necessary for regression)


	=> extraction-based PMC generation is inferior solution

	Comparison of modeling process variations
	TRADICA
	PMC from extraction
	physics-based predictive modeling equations
	non-physical polynomial equation for every model parameter
	calibration to process due to nominal HICUM parameters and measured PCM
	Calibration using coefficients within polynomial => includes also artefacts of model parameter extraction
	can select uncorrelated device parameters and dimensions as independent variables
	selected independent variables are mostly correlated
	=> contradiction to statistical circuit simulation requirements
	integrated in PDK preferable;
	can be used with built-in statistical capability of circuit simulator
	limited to use of built-in statistical capability of circuit simulator


	Example
	Atmel (Telefunken) presented at DATE2007 a successful implementation of TRADICA in their Design Frame Work (DFW)
	• low-cost amplifier, high-volume production => yield is critical economic factor
	• mismatch (only) analysis => 243 mV offset voltage, 3.8 mV standard deviation


	Analysis of Process Tolerance Impact
	• sensitivity analysis using 300 MC simulations to identify TPs of highest impact
	=> internal base doping has highest impact
	• combined analysis using lateral (i.e. incl. mismatch) and vertical process variation show offset mean of 244.3 mV with a standard deviation of 25.5 mV
	• offset increased because of additional consideration of vertical transistor variations

	=> TRADICA based sensitivity analysis reproduces measured data

	Results for redesigned circuit
	• compensation circuits added
	• optimization supported by TRADICA
	• offset mean reduction from 243mV to 0.1mV
	• offset std reduction from 25.1mV to 1.1mV
	=> experimentally verified!
	=> procedure has been used at Atmel (now Telefunken) for generating statistical models in their PDKs

	Summary
	various approaches existing for modeling of process variations
	• MC simulation of model parameters => simple but bad idea (no correlation)
	• parametric model cards (often found approach)
	• discussed alternatives for generating PMCs
	• issues were pointed out

	=> inferior solution to fully physics-based approach

	process-based scalable (physics-based) approach
	• includes smooth and accurate dependence of model parameters on process parameters
	• includes correlation between model parameters,
	• enables analysis of device matching

	future trend: expect increasing process variations
	=> proper statistical modeling will improve circuit yield


