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HICUM Workshop Introduction
Introduction
• Need for simplified models:

• computationally intensive circuit simulation (large-scale, long transients)
• single device availability and extraction (e.g., for III/V HBTs)
• preliminary design phase
• can mix with sophisticated models (HICUM, MEXTRAM, VBIC) for critical devices 

=>  parameter extraction: single device or generated from HICUM/L2 
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 =>  HICUM/L0 v1.30

   available in 10+ circuit simulators

• Improvements over SGPM
• transfer current: simplified GICCR

(incl. quasi-saturation)
• mobile charge: high-current effects
• depletion charge: punch-through,

forward bias limiting
• collector avalanche effect
• improved base resistance(bias, T)
• self-heating (incl. external T node)
• substrate transistor integrated
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HICUM Workshop Introduction
About this presentation ...
... overview on recent changes from v1.2 to v1.3

• transfer current 
• improved model formulation for low- and medium-current region

   => bias dependent reverse Early effect via weight factor hjEi as in HICUM/L2 v2.31
• high-current region (incl. quasi-saturation)

   => closed-form solution for transfer current via Cardano equation 

• Temperature dependence
• reverse Early voltage VEr

• high injection current IQfh 
• thermal resistance 

Note: HICUM/L0 can be reduced to SGPM for compatibility purposes
                              (except yet for NQS effect)

• Experimental verification 
• ST B3T process: bias and T dependence
 © AM 4



HICUM Workshop Transfer Current
Transfer Current
• formulation at low and medium current densities (VC’E’ > 0.2V)

  with  vjXid = QjXi/CjXi0  (X = E, C)

• observed drop in normalized transconductance caused by impact of Ge grading in
BE SCR on reverse Early voltage  (see HICUM/L2 v2.31)

• proposal by Huszka et al. (implemented in v1.2; cf. HICUM WS 2009)

• interpret  in GICCR as effective doping concentration

• apply classical depletion charge calculation 
=> same bias dependent formulation for QjEi and CjEi but different parameters

• interpret weighted GICCR charge as "DC Charge" 
=>  use same equation, but define new set of DC depletion charge parameters for vjEid 

• Issues
• weakness in interpretation of parameters to physical device structure 
• no temperature dependence included (DC charge T dependence differs via hjEi(T))
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HICUM Workshop Transfer Current
New approach at low to medium current densities 
apply HICUM/L2 v2.31 solution for modeling (normalized) transconductance

• bias dependent weight factor hjEi yields bias dependent reverse Early voltage:

      with      (vj = smoothed VB’E’)

=> now includes material composition explicitly

• new parameters: 
• VEr0  => Early voltage at VBE = 0 
• aVEr  => new parameter for bias dependence of VEr  (aVEr = ahjEi  in L2)

• advantages of new formulation
• maintain physics-based depletion capacitance parameters (extracted from AC data)
• new parameters have clear link to device structure and T dependence

• medium current densities: weight factor hf0 in L2 v2.31
  => can be included by simply adjusting parameter value for IQf 
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HICUM Workshop Transfer Current
High-current region
• complete GICCR can only be solved iteratively (cf. HICUM/L2)

=> HICUM/L0 uses simplification of mobile charge at high injection 

• starting point is simplified transfer current expression from L2:

• simplified normalized mobile charge from HICUM/L2:

    with w(ITf) as normalized collector injection width

=>  further simplifications needed for obtaining closed-form solution
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HICUM Workshop Transfer Current
High-current region (cont’d)
• defining 

• depletion component                   

• ideal current components           , 

• low-current injection component 

=>  

• neglecting high-current injection component ΔqfT yields quadratic equation 

=>  solution  

=> transfer current      =>  equivalent to SPICE GP model: 
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HICUM Workshop Transfer Current
High-current region (cont’d)
• initial L0 v1.1 used ΔqfT with  as "high-current correction" 

=>  solution can become inconsistent or yield gm ≤ 0 for certain parameter choices

• intermediate fix was implemented at IFX and included in v1.2 
• complicated derivation
• questionable assumptions  =>  limited applicability?

• setting gτfE = 1 and defining the new model parameters 

,   

    yields further simplified and more compact expression
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HICUM Workshop Transfer Current
High-current region (cont’d)

• define ideal base/collector component  and 

ideal emitter component 

=>  

• third-order polynomial   

=> can be solved using Cardano’s method

• solution procedure 
• qpT is calculated for the asymtotic cases w=0 and w=1 (using still the previous square root

solution to reduce numerical complexity)
=> results are used to calculate the final value for w as function of ICk and ITfi/qpT,l 

• with the actual w  =>  final qpT is calculated from third-order polynomial

=> new solution method yields closed-form solution and saves computational effort
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HICUM Workshop Transfer Current
Impact of simplification in ΔqfT 

=>  good agreement at high current densities for realistic conditions
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HICUM Workshop Transfer Current
Cardano’s approach for solving cubic equation

• by substituting   => normalized cubic equation   can
be transformed to reduced one:

        ,  with  ,     

• Discriminant     => determines nature of solution

• Depending on sign of D three possible cases:
• D = 0   =>    

• D > 0   =>    

• D < 0   =>     with    and  

=>  implemented in Verilog-A code of HICUM/L0 v1.3
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HICUM Workshop Temperature dependence
Temperature dependence
                                  (see HICUM/L2 presentation for detailed discussions and results)

• reverse Early voltage parameters (according to hjEi)

 ,    

• low-injection charge related onset current (according to hf0)

• high-injection charge related onset current 
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HICUM Workshop Temperature dependence
Temperature dependence (contd.)

• high-injection related normalized storage time 

• thermal resistance 

Note: values at T0 are model parameters
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HICUM Workshop Temperature dependence
Summary of changes
• New L0 parameters

• Model Implementation
• full backward compatibility => DC-charge parameters (VDEDC, zEDC, ajEDC) are kept sepa-

rately from those for the AC-charge
• bias dependence of VEr can be turned off by setting aVEr to zero

Parameter  Default Description
aVEr 0 Parameter for bias dependence of VEr  

ΔVgBE  0 Bandgap difference between base and BE-junction. Used for tem-
perature dependence of VEr and Iqf  

ζvgBE 1 Temperature parameter for VEr 

ζVEr -1 Temperature parameter for reverse Early voltage VEr

αiqfh 0 First-order temperature coefficient for Iqfh  

kiqfh 0 Second-order temperature coefficient for Iqfh  

it_mod 0 Switch for different transfer current formulations
(0:IFX-model (2nd order equation);1:Cardano (3nd order equation))

tef_temp 1 Switch for turning tef0(T) equation on and off (0: off ;1: on)
 © AM 15



HICUM Workshop Experimental results
Experimental results
• B3T process from ST

• Parameters were obtained automatically from (actually extracted) Hicum/L2 parameters 

T = 27 oC 

=> excellent agreement over wide bias range 
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HICUM Workshop Experimental results
B3T results (cont’d)

=>  good results also over wide temperature range 
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HICUM Workshop InP HBT technology
InP HBT technology
• III-V HBT compact models  

• DC formulation often still SGPM based, often customized external extensions
• no geometry scaling
• typically contain significant empirical fitting instead of physics-based equations
• are typically not implemented across simulation platforms (e.g. AHBT is avail. in ADS only)

=> more recently: Verilog implementation (at 20...100% speed penalty) 

• parameter extraction focused on single device (vs. scalable in silicon)
=> few discrete parameter sets  => circuit optimization via device sizing impossible

• efficient statistical modeling impossible (although more needed than for silicon tech-
nologies)

=> little incentive for implementation and support by EDA vendors 
=> deployment of III-V HBT technology is limited by model capabilities

The silicon industry has demonstrated that a certain cooperation 
between foundries is beneficial to the business of all 
 © AM 18



HICUM Workshop InP HBT technology
Experimental results for InP HBTs

foundry process from GCS

• InGaAs/InP transistors: fT ≈ 350 GHz, fmax ≈ 400 GHz

• no special test structures available  => no scaling possible => HICUM/L0 v1.3 
• estimated base and collector resistance from sheet resistances and theory 
• measurements at various ambient temperatures for extraction of temperature related param-

eters
• automated extraction with manual improvement for the remaining parameters
• physical formulation for bias and T dependent VER (important for compositional grading)
 © AM 19



HICUM Workshop InP HBT technology
Experimental results 
emitter window area AE0 = 0.8 x 10 μm2 

=>  good agreement over wide bas range 
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HICUM Workshop InP HBT technology
Experimental results
   maximum available gain                       transit frequency fT  

=>  acceptable agreement without invoking special "III/V" effects
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HICUM Workshop InP HBT technology
Experimental results
Maximum oscillation frequency

=>  acceptable agreement without invoking special "III/V" effects
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HICUM Workshop Conclusion
Conclusion
• improved transfer current formulation 

• reverse Early effect includes compositional grading in BE junction => capture gmVT/IC drop
• first closed-form solution for low to high-current injection in HBTs

• temperature dependence for new and update for existing parameters  

=> all new features have been made available in new HICUM/L0v1.3 code

• L0 parameters can be obtained automatically from "L2-to-L0" converter

• Application to mm-wave SiGe and InP HBTs 
=> good agreement for small- and large-signal data 

• next version 1.31 will also include vertical NQS effects
• for complete compatibility with SGPM
• both transfer current and charge are included (for correct phase shift in y21 and y11)

=>  complete downward compatibility to SGPM allows replacing SGPM
 © AM 23
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	Introduction
	• Need for simplified models:
	• computationally intensive circuit simulation (large-scale, long transients)
	• single device availability and extraction (e.g., for III/V HBTs)
	• preliminary design phase
	• can mix with sophisticated models (HICUM, MEXTRAM, VBIC) for critical devices

	• Improvements over SGPM
	• transfer current: simplified GICCR (incl. quasi-saturation)
	• mobile charge: high-current effects
	• depletion charge: punch-through, forward bias limiting
	• collector avalanche effect
	• improved base resistance(bias, T)
	• self-heating (incl. external T node)
	• substrate transistor integrated

	=> parameter extraction: single device or generated from HICUM/L2

	About this presentation ...
	... overview on recent changes from v1.2 to v1.3
	• transfer current
	• improved model formulation for low- and medium-current region => bias dependent reverse Early effect via weight factor hjEi as in HICUM/L2 v2.31
	• high-current region (incl. quasi-saturation) => closed-form solution for transfer current via Cardano equation

	• Temperature dependence
	• reverse Early voltage VEr
	• high injection current IQfh
	• thermal resistance


	Note: HICUM/L0 can be reduced to SGPM for compatibility purposes
	(except yet for NQS effect)
	• Experimental verification
	• ST B3T process: bias and T dependence



	Transfer Current
	• formulation at low and medium current densities (VC’E’ > 0.2V)
	with vjXid = QjXi/CjXi0 (X = E, C)
	• observed drop in normalized transconductance caused by impact of Ge grading in BE SCR on reverse Early voltage (see HICUM/L2 v2.31)
	• proposal by Huszka et al. (implemented in v1.2; cf. HICUM WS 2009)
	• interpret in GICCR as effective doping concentration
	• apply classical depletion charge calculation => same bias dependent formulation for QjEi and CjEi but different parameters
	• interpret weighted GICCR charge as "DC Charge" => use same equation, but define new set of DC depletion charge parameters for vjEid

	• Issues
	• weakness in interpretation of parameters to physical device structure
	• no temperature dependence included (DC charge T dependence differs via hjEi(T))



	New approach at low to medium current densities
	apply HICUM/L2 v2.31 solution for modeling (normalized) transconductance
	• bias dependent weight factor hjEi yields bias dependent reverse Early voltage: with (vj = smoothed VB’E’)

	=> now includes material composition explicitly
	• new parameters:
	• VEr0 => Early voltage at VBE = 0
	• aVEr => new parameter for bias dependence of VEr (aVEr = ahjEi in L2)

	• advantages of new formulation
	• maintain physics-based depletion capacitance parameters (extracted from AC data)
	• new parameters have clear link to device structure and T dependence

	• medium current densities: weight factor hf0 in L2 v2.31 => can be included by simply adjusting parameter value for IQf


	High-current region
	• complete GICCR can only be solved iteratively (cf. HICUM/L2) => HICUM/L0 uses simplification of mobile charge at high injection
	• starting point is simplified transfer current expression from L2:
	• simplified normalized mobile charge from HICUM/L2:
	with w(ITf) as normalized collector injection width
	=> further simplifications needed for obtaining closed-form solution

	High-current region (cont’d)
	• defining
	• depletion component
	• ideal current components ,
	• low-current injection component

	=>
	• neglecting high-current injection component DqfT yields quadratic equation

	=> solution
	=> transfer current => equivalent to SPICE GP model:

	High-current region (cont’d)
	• initial L0 v1.1 used DqfT with as "high-current correction"
	=> solution can become inconsistent or yield gm £ 0 for certain parameter choices
	• intermediate fix was implemented at IFX and included in v1.2
	• complicated derivation
	• questionable assumptions => limited applicability?

	• setting gtfE = 1 and defining the new model parameters

	,
	yields further simplified and more compact expression


	High-current region (cont’d)
	• define ideal base/collector component and ideal emitter component
	=>
	• third-order polynomial

	=> can be solved using Cardano’s method
	• solution procedure
	• qpT is calculated for the asymtotic cases w=0 and w=1 (using still the previous square root solution to reduce numerical complexity) => results are used to calculate the final value for w as function of ICk and ITfi/qpT,l
	• with the actual w => final qpT is calculated from third-order polynomial


	=> new solution method yields closed-form solution and saves computational effort

	Impact of simplification in DqfT
	=> good agreement at high current densities for realistic conditions

	Cardano’s approach for solving cubic equation
	• by substituting => normalized cubic equation can be transformed to reduced one:
	, with ,
	• Discriminant => determines nature of solution
	• Depending on sign of D three possible cases:
	• D = 0 =>
	• D > 0 =>
	• D < 0 => with and


	=> implemented in Verilog-A code of HICUM/L0 v1.3

	Temperature dependence
	(see HICUM/L2 presentation for detailed discussions and results)
	• reverse Early voltage parameters (according to hjEi)
	,
	• low-injection charge related onset current (according to hf0)
	• high-injection charge related onset current


	Temperature dependence (contd.)
	• high-injection related normalized storage time
	• thermal resistance
	Note: values at T0 are model parameters

	Summary of changes
	• New L0 parameters
	aVEr
	0
	Parameter for bias dependence of VEr

	ΔVgBE
	0
	Bandgap difference between base and BE-junction. Used for temperature dependence of VEr and Iqf

	zvgBE
	1
	Temperature parameter for VEr

	zVEr
	-1
	Temperature parameter for reverse Early voltage VEr

	aiqfh
	0
	First-order temperature coefficient for Iqfh

	kiqfh
	0
	Second-order temperature coefficient for Iqfh

	it_mod
	0
	Switch for different transfer current formulations
	(0:IFX-model (2nd order equation);1:Cardano (3nd order equation))

	tef_temp
	1
	Switch for turning tef0(T) equation on and off (0: off ;1: on)
	• Model Implementation
	• full backward compatibility => DC-charge parameters (VDEDC, zEDC, ajEDC) are kept separately from those for the AC-charge
	• bias dependence of VEr can be turned off by setting aVEr to zero



	Experimental results
	• B3T process from ST
	• Parameters were obtained automatically from (actually extracted) Hicum/L2 parameters

	T = 27 oC
	=> excellent agreement over wide bias range

	B3T results (cont’d)
	=> good results also over wide temperature range

	InP HBT technology
	• III-V HBT compact models
	• DC formulation often still SGPM based, often customized external extensions
	• no geometry scaling
	• typically contain significant empirical fitting instead of physics-based equations
	• are typically not implemented across simulation platforms (e.g. AHBT is avail. in ADS only)

	=> more recently: Verilog implementation (at 20...100% speed penalty)
	• parameter extraction focused on single device (vs. scalable in silicon) => few discrete parameter sets => circuit optimization via device sizing impossible
	• efficient statistical modeling impossible (although more needed than for silicon technologies)

	=> little incentive for implementation and support by EDA vendors
	=> deployment of III-V HBT technology is limited by model capabilities
	The silicon industry has demonstrated that a certain cooperation between foundries is beneficial to the business of all

	Experimental results for InP HBTs
	foundry process from GCS
	• InGaAs/InP transistors: fT » 350 GHz, fmax » 400 GHz
	• no special test structures available => no scaling possible => HICUM/L0 v1.3
	• estimated base and collector resistance from sheet resistances and theory
	• measurements at various ambient temperatures for extraction of temperature related parameters
	• automated extraction with manual improvement for the remaining parameters
	• physical formulation for bias and T dependent VER (important for compositional grading)



	Experimental results
	emitter window area AE0 = 0.8 x 10 mm2
	=> good agreement over wide bas range

	Experimental results
	maximum available gain transit frequency fT
	=> acceptable agreement without invoking special "III/V" effects

	Experimental results
	Maximum oscillation frequency
	=> acceptable agreement without invoking special "III/V" effects

	Conclusion
	• improved transfer current formulation
	• reverse Early effect includes compositional grading in BE junction => capture gmVT/IC drop
	• first closed-form solution for low to high-current injection in HBTs

	• temperature dependence for new and update for existing parameters
	=> all new features have been made available in new HICUM/L0v1.3 code
	• L0 parameters can be obtained automatically from "L2-to-L0" converter
	• Application to mm-wave SiGe and InP HBTs => good agreement for small- and large-signal data
	• next version 1.31 will also include vertical NQS effects
	• for complete compatibility with SGPM
	• both transfer current and charge are included (for correct phase shift in y21 and y11)


	=> complete downward compatibility to SGPM allows replacing SGPM
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