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HICUM Workshop Introduction

Introduction

* Need for simplified models:
» computationally intensive circuit simulation (large-scale, long transients)
* single device availability and extraction (e.g., for lllI/V HBTSs)
 preliminary design phase
« can mix with sophisticated models (HICUM, MEXTRAM, VBIC) for critical devices

=> HICUM/LO v1.30 - Improvements over SGPM
S « transfer current: simplified GICCR
' (incl. quasi-saturation)
» mobile charge: high-current effects

 depletion charge: punch-through,
forward bias limiting

« collector avalanche effect

» improved base resistance(bias, T)
+ self-heating (incl. external T node)
» substrate transistor integrated

available in 10+ circuit simulators

=> parameter extraction: single device or generated from HICUM/L2
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About this presentation ...
... overview on recent changes from v1.2 to v1.3

* transfer current

« improved model formulation for low- and medium-current region
=> bias dependent reverse Early effect via weight factor hjg; as in HICUM/L2 v2.31

* high-current region (incl. quasi-saturation)
=> closed-form solution for transfer current via Cardano equation

» Temperature dependence
* reverse Early voltage Vg,
* high injection current /g,

* thermal resistance

Note: HICUM/LO can be reduced to SGPM for compatibility purposes
(except yet for NQS effect)

» Experimental verification
« ST B3T process: bias and T dependence
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Transfer Current

« formulation at low and medium current densities (Vg > 0.2V)

Lg

VBVE! .
]Tf = ITﬂ = 7 GXp(m V) with Vind = Qin/CinO (X = E, C)
My cf

|+ ViEid N Vicid
Vee Vir 1o

» observed drop in normalized transconductance caused by impact of Ge grading in
BE SCR on reverse Early voltage Vi, = Opy/(h;5,C ;) (S€€ HICUM/L2 v2.31)

» proposal by Huszka et al. (implemented in v1.2; cf. HICUM WS 2009)

* interpret NB/(unn?) in GICCR as effective doping concentration

» apply classical depletion charge calculation
=> same bias dependent formulation for Q;g; and Cjg; but different parameters

* interpret weighted GICCR charge as "DC Charge"
=> use same equation, but define new set of DC depletion charge parameters for vigiq
* |Issues

« weakness in interpretation of parameters to physical device structure
* no temperature dependence included (DC charge T dependence differs via hgi(T))
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New approach at low to medium current densities

apply HICUM/L2 v2.31 solution for modeling (normalized) transconductance

bias dependent weight factor hjg; yields bias dependent reverse Early voltage:

. 1 . V. Zg
Vi, = Ero/(eXp(u) ) with u = aVE{l_(l_ﬁJ,) } (vj=smoothed Vi)

u

=> now includes material composition explicitly

new parameters:
* Vg9 => Early voltage at Vg =0
* aygr => new parameter for bias dependence of Vg, (ayg, = apjg; in L2)

advantages of new formulation

« maintain physics-based depletion capacitance parameters (extracted from AC data)
* new parameters have clear link to device structure and T dependence

medium current densities: weight factor hy in L2 v2.31
=> can be included by simply adjusting parameter value for /¢
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High-current region

» complete GICCR can only be solved iteratively (cf. HICUM/L2)
=> HICUMY/LO uses simplification of mobile charge at high injection

« starting point is simplified transfer current expression from L2:
I I exp( VB.E.)
24 1+VjEid+ ijid+ ITf_|_ I,  Ag meV
VEr VEf IQf ]Qr

« simplified normalized mobile charge from HICUM/L2:

1

grE ]
) 2 ST IS
[(L =St hychine) s T +thTEf0(1C,) 1+ gk

NG =
T QpOh, 0

with w(/1¢) as normalized collector injection width

=> further simplifications needed for obtaining closed-form solution
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High-current region (cont’d)

* defining
 depletion component q; = I +v Eld/V +v. Czd/ VEf
VB'EI VB!CV
* ideal t t =1 ( I.. =1 (
ideal current components sz g€Xp meV) Tri g€Xp mch)

* low-current injection component dn = Tﬁ/IQf+ I,/ 1o,

i, Ay

=> q = q.-l—
pT ] dyr 47

* neglecting high-current injection component Agyr yields quadratic equation

_ - 9. (4’
=> solution 47— dpr = 5+ 5 + 4y

L.
=> transfer current I, — I, = qu’ => equivalent to SPICE GP model:
pTI
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High-current region (cont’d)
* initial LO v1.1 used Aqgr with 1, — I, as "high-current correction”

=> solution can become inconsistent or yield g,,, < 0 for certain parameter choices

 intermediate fix was implemented at IFX and included in v1.2

« complicated derivation
» questionable assumptions => limited applicability?

* setting g, = 7 and defining the new model parameters

QpOh 0 _ thTEfo

1 , lg =
th [(1 fthc) T thfthc Thes Jh 2[(1 _fthc) T thfthc]Thcs

yields further simplified and more compact expression

t
- Iy 2
A‘ifr‘( Iy t7 f)/]Qﬂz
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High-current region (cont’d)
* define ideal base/collector component Ag; = (ITﬁ/Ith)w2 and
ideal emitter component AqEﬁ. = tthzTﬁ/(Ith]CK)

Ly Adscp + quEﬁ

=> q,7 = q;
pT J q,r q,r

. 3 2
* third-order polynomial ¢, ,.—q,9,7— (4, + Aqpci)d,r—Aqp,; = O
=> can be solved using Cardano’s method

* solution procedure

* Qpr is calculated for the asymtotic cases w=0 and w=1 (using still the previous square root

solution to reduce numerical complexity)
=> results are used to calculate the final value for w as function of /¢ and I74/q,r,

* with the actual w => final q, 7 is calculated from third-order polynomial

=> new solution method yields closed-form solution and saves computational effort
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Impact of simplification in Aqsr

g.fe =1
=> transfer current
and transconductance
1 of LO with Cardano so-
lution perfectly fit those
| of L2 (also with g ==1)
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051 ’ tion)
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=> good agreement at high current densities for realistic conditions
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Cardano’s approach for solving cubic equation

* by substituting x = z—a/3 => normalized cubic equation X +ax’+bx+c =0 can
be transformed to reduced one:

3 o 28> ab
+pztqg = ' = b—— = —= ——=+
z +pz+qg =0, with p =15 3 475773 te

2 3
 Discriminant D = @) +(§) => determines nature of solution

* Depending on sign of D three possible cases:
« D=0 => x = 3(q/p)—a/3

e D>0 => x = 3q/2-JD+3-q/2- D—%l

/ 3
° = = @) _ q I — abS(p) — _Q _]9_
D<0 => x kcos(3 3 with &k = 2 / 3 and O acos( 2/( %

=> implemented in Verilog-A code of HICUM/LO v1.3
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Temperature dependence

(see HICUM/L2 presentation for detailed discussions and results)
* reverse Early voltage parameters (according to h;g;)

Vio(T) = VE}”O(TO)CXP|:AV+jBE((T10)CNgBE lﬂ , ayp(T) = aVEr(TO)(Tlo)CVEr

* low-injection charge related onset current (according to hyy)

_ T\ 5o AvaBE( T )
IQ/,(T) = ]Q/(TO)(TO) exp[— Vv, TO—l }
* high-injection charge related onset current

Lop(T) = Lo (TO)(1+ 0y q AT+ Ky AT)
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Temperature dependence (contd.)

* high-injection related normalized storage time

(1) = (TP exp( (1)

* thermal resistance

D =ty 3)

Note: values at T are model parameters
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Summary of changes

 New LO parameters

Parameter | Default Description
aver 0 Parameter for bias dependence of Vg,
AVyge 0 Bandgap difference between base and BE-junction. Used for tem-
perature dependence of Vg, and /4

SvgBE 1 Temperature parameter for Vg,
SVEr -1 Temperature parameter for reverse Early voltage VEr
Clgth 0 First-order temperature coefficient for /g,
Kigfh 0 Second-order temperature coefficient for /o

it mod 0 Switch for different transfer current formulations

(0:IFX-model (2”0I order equation); 7:Cardano (3nOI order equation))

tef temp 1 Switch for turning t,s(T) equation on and off (0: off ;71: on)

* Model Implementation
» full backward compatibility => DC-charge parameters (Vpepc, Zepc: @jepc) are kept sepa-
rately from those for the AC-charge
* bias dependence of Vg, can be turned off by setting a,/g, to zero
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Experimental results

» B3T process from ST
» Parameters were obtained automatically from (actually extracted) Hicum/L2 parameters

T=27°C

300

2501

Forward current gain
fT (GH2z2)
|_\
a1
()

10 10°
I c (mA)

=> excellent agreement over wide bias range
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=> good results also over wide temperature range
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InP HBT technology

* |lI-V HBT compact models
« DC formulation often still SGPM based, often customized external extensions
* Nno geometry scaling
« typically contain significant empirical fitting instead of physics-based equations
« are typically not implemented across simulation platforms (e.g. AHBT is avail. in ADS only)

=> more recently: Verilog implementation (at 20...100% speed penalty)

« parameter extraction focused on single device (vs. scalable in silicon)
=> few discrete parameter sets => circuit optimization via device sizing impossible

« efficient statistical modeling impossible (although more needed than for silicon tech-
nologies)

=> little incentive for implementation and support by EDA vendors
=> deployment of lll-V HBT technology is limited by model capabilities

The silicon industry has demonstrated that a certain cooperation
between foundries is beneficial to the business of all
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Experimental results for InP HBTs
foundry process from GCS
* InGaAs/InP transistors: ft =~ 350 GHz, 5, = 400 GHz

* no special test structures available => no scaling possible => HICUM/LO v1.3

 estimated base and collector resistance from sheet resistances and theory

* measurements at various ambient temperatures for extraction of temperature related param-
eters

« automated extraction with manual improvement for the remaining parameters
* physical formulation for bias and T dependent Vgg (important for compositional grading)
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Experimental results

emitter window area Agg = 0.8 x 10 um?

forward Gummel characteristics forward output characteristics
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(requires addition of Ig¢ rec. 8jc variable) Vge =[0.7, 0.76, 0.82, 0.84, 0.86, 0.88] V

=> good agreement over wide bas range

20
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Experimental results

maximum available gain transit frequency ft

MAG (dB)

[EEN
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—
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_ 2
Jo ={0.89,5.94} and {0.93, .32} MAIM® \/ _ 1095 0 01,02, 03,04, 0.5]V
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=> acceptable agreement without invoking special "lll/V" effects
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Experimental results

Maximum oscillation frequency

0.8 x 3 um? 0.8 x 10 um?
400 : 400 :
OV, =05V OV, =05V
x Vg, =04V x Vg =04V N

=> acceptable agreement without invoking special "lll/V" effects
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Conclusion

» improved transfer current formulation
* reverse Early effect includes compositional grading in BE junction => capture g,,V1/Ic drop
» first closed-form solution for low to high-current injection in HBTs

» temperature dependence for new and update for existing parameters
=> all new features have been made available in new HICUM/LOv1.3 code

» LO parameters can be obtained automatically from "L2-to-L0" converter

» Application to mm-wave SiGe and InP HBTs
=> good agreement for small- and large-signal data

» next version 1.31 will also include vertical NQS effects
 for complete compatibility with SGPM
* both transfer current and charge are included (for correct phase shift in y,4 and y44)

=> complete downward compatibility to SGPM allows replacing SGPM
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