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HICUM Workshop Introduction

Introduction

» Shrinking device dimensions

* higher electric fields and increased self-heating
* increasing impact on carrier transport and reliability of the device

* Increased packing density

 higher thermal interaction between neighboring devices (thermal coupling)
 detect/avoid hot-spots in larger devices (e.g. PA-arrays)

=> in-house development

 accurate numerical (discretized) solution (THERMO)

* highest degree of flexibility (e.g. new material models, boundary conditions, structure, etc.)
* access on internal quantities and verification of Ry,/Cy, extraction methods

 thermal modeling beyond current materials and models (roadmapping)

« fast solution (Green’s function)
» support of compact model generation and device design, sizing, and optimization
« fast investigation of temperature distribution across large structures
« advanced thermal network development (static and transient beyond single R,-Cy, network)
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3D numerical heat flow equation solver (THERMO)

« Numerical solution of the heat flow equation (1D to 3D):

. > > aTL >
div(k(?, T,)grad(T,)) = a(h, Tp)=" = ppye (P

» Features:
« stationary and transient solutions
variety of physical models (thermal conductivity k, thermal diffusivity o)
materials covered: Si, SiO,, SiGe (preliminary model), etc. (parameters from literature)

post-processor for determining the most important parameters/quantities (Rip,...)

internal results saved as MAT-Files => can be directly accessed by Matlab/Octave
=> suitable for most applications
discretization and simulation time strongly depend on investigated structure
* Restrictions:
 only rectangular domains (regular grids) so far => extension to non-regular if demanded

=> tool supports compact modeling and experimental data evaluation
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HICUM Workshop 3D numerical heat flow equation solver (THERMO)

Application example
3D simulation of a fabricated SiGe HBT (CBEBC)

2D cross section of a 3D structure

(only one quarter needs to be isothermal boundary .
simulated for symmetry condition insulating boundary
reasons) £ condition

SiGe base

symmetry line with
reflecting boundary
condition = T

isothermal boundary
condition
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Results

3D temperature distribution thermal resistance

simulated vs. measured
geometry dependence
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=> Simulation and measured results agree with each other within range of uncertainty
margin (structure, physical models and parameters)!
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Green’s function approach
... for 3D heat equation

» Semi-analytical solution of linear heat flow equation (1D to 3D):

. L
div(kgrad(T;)) = Sy —le.SS(;)

 Features

« Stationary and transient solutions for small AND large homogeneous domains, either (semi-)
infinite (e.qg. lateral substrate extension) or with laterally bounding regions (e.g. trench)

 possible boundary conditions:

oT
» at surfaces: spatially variable temperature 7, = f(;) or heat flux Ka—L = f(;)
n
oT;
» atinterfaces convection boundary condition K@_ + hTL =0
n

with heat transfer coefficient h for, e.g., reduced heat flow into trench-walls or buried oxide with different
thermal conductivity

« temperature dependent non-linear thermal conductivity can be included through Kirchhoff
transformation (=> e.g. Rin(T())
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Example

Thermal characterization of active devices fabricated in a SOl technology

G{) »/t:UB « insulating boundary at

V4 NN
iz» S\ e substrate surface
y
X W/2 * reduced heat flux into

s < DTI and BOX modeled
device - by convection b.c.

(use of heat transfer
tPi RE— coefficients H,, H, H,)

* isothermal b.c. at chip
backside (heat sink)

» exploiting symmetry
through use of insulat-
ing b.c.

SUBSTRATE AN
1deal heat sink
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Applications
3D temperature distribution in a time dependence of temperature
3 finger multi-transistor array increase during dynamic operation
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=> detect peak temperature & reliability issues => dynamic thermal network

« fast investigation/generation (seconds) of temperature distributions also over large
structures (e.g. transistor arrays)

* easily tunable through use of results from measurements/extraction and numerical
simulations
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Application to circuit design and simulation

 supports efficient generation of thermal models (self-heating, thermal coupling)

* thermal models available in SPICE and VERILOG-A format

.SUBCKT THNET L4 TNOO1l TNOO2 TNOO3 TNAMBIENT
simulator lang=spectre
simulator lang=spice

RTHOO01 Tn001 Tn001001 412.98 P thermal network
ETHO01002  Tn001001 Tn001002 Tn002 Tn002001  0.3676

ETHO01003  Tn001002 TNAMBIENT Tn003 Tn003001  0.2585

RTHO02 TnO02 Tn002001 412.98

ETH002001 Tn002001 Tn002002 TnO0O01l Tn001001 0.3676

analog
begin
Tnom = tnom+ P _CELSIUSO;
//=== self-heating source 1
rth001 = 412.98;
rth001 t = rth001 * exp(zetarth * 1ln((Stemperature + V(Tn001)) / Tnom)
mode|S / V(Tn001,Tn001001) <+ I(Tn001,Tn001001) * rthOOl t;
//--- coupling source 1
c001002 = 0.367593;

c001003 = 0.258534;
V(Tn001001,Tn001002) <+ V(Tn002,Tn002001) * c001002;
V(Tn001002, THGND) <+ V(Tn003,Tn003001) * c001003;

=> well-suited for device sizing and layout optimization w.r.t. thermal constraints
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Modeling of static thermal coupling

thermal subcircuit for two-finger transistor or two transistor cells (example)

4

- emitter finger 1 and 2
* need external access to thermal node in compact model
 set thermal resistance of compact model to infinity

» temperature dependence of thermal resistance in thermal subcircuit included
through Verilog-A code
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Test structure for determining thermal coupling
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=> fabricated in Si and investigated W|th THERMO, GF
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Extraction of static thermal coupling
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Summary

* Numerical thermal solver
 captures complicated structures without simplifications
« good agreement with measured Ry, of state-of-the art devices

« aid in tuning of GF-based method (e.g. determination of heat transfer coefficients)
* highly valuable for (HBT) roadmapping

* GF-method
« can be adjusted to model realistic structures (including DTI, SOI)
 well-suited for large and small structures (i.e. including arrays of transistors)
« fast but still accurate results for model generation and circuit design related applications (siz-

ing, optimization)
» Accuracy depends on material models and parameters!!!

=> test structures and measurements needed for development/verification of material
models for advanced devices
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