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HICUM Workshop Introduction

Introduction

« Experimental results ...

» from DOTFIVE project (3 different process generations of 3 different technology partners)
« from characterizing other process types (production, high-voltage)

=> observation of a variety of physical effects

« some effects were difficult to describe with physics-based model parameters with
existing v2.24

=> motivation for extension to v2.31

* heavy use of BTE, HD, DD device simulation for model development

=> final verification always on experimental results

=> this presentation: overview and details on v2.37 extensions
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HICUM equivalent circuit
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Transfer current
... in HICUM is based on the GICCR
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From 1D drift-diffusion-transport equation: 7, = ¢,

Weight functions h;and h, are 1 in the 1D case, ¢ is a bias independent constant.
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b, (x)n; (x)

Weight function h, reads 7 g(x) = , with "r" as reference region

I u, (xp)n, (x5)
£, (0m; (x)
j p(x)dx
k

p(x)dx

Reference region in HICUM is the neutral base: 7, =

k represents the various regions in the transistor
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Transfer current related charge

» Actual charge in the transistor is divided into zero-bias, depletion and mobile charge
component: Qp = qAEIp(x)dx = Qp0+AQj+AQm

» Transfer current expression from GICCR:

[; = i()—[exp(ViEi) — exp(@—iﬂ = Ipe—1
T QpT VT VT f °Tr
with weighted hole charge
QpT - on + hjEinEi + hjCinCz’ + QfT“L O,r
\AQ]'/

and weighted mobile charge (hg newly introduced in v2.3)

Orr :@‘ﬂ)in+ hgAQpr+ AQpr+ hycAQy  Qup = Ty,

=> Transfer current is directly related to charges defined from small- and
large-signal behavior
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Transfer current

GICCR allows taking into account material composition
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Normalized transconductance
gm/(Ic/V7) can be used to identify device non-ideality and to compare technologies

» experimental observation: drop in normalized transconductance already at low to
medium injection for some technologies.
1D device simulation
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« cannot be described with simple (bias independent) reverse Early voltage models

* From 1D device simulation: effect is directly related to Ge grading in BE-SCR

=> explicitly included in v2.30: hjEl. = hjEiO exp(u) — 1 , U =1 — (Vg Vpg:) ©)

u
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Transconductance at medium injection
Stronger reduction of g,,/(/c/V1) could not be described with meaningful Q, values

* Need to keep physics-based value for Q, for accurate modeling of internal base
(sheet) resistance => extract Qo from tetrodes rather than from transfer current.

* For graded Ge, weighted mobile charge is much larger than actual mobile charge (mostly
concentrated in neutral base) => need to introduce hg:

Qﬁ = th’CfOin—l— thAQEer AQBf+ thAQCf

10 :
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=> strongly improves g,, modeling at medium bias
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Temperature dependence of new weight factors

... due to bandgap differences

* hjg;also incl. movement of SCR boundaries 0.1 \ \ ‘ 10
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Results

» Physics-based extensions in v2.30 and v2.31
» Material composition related effects modeled explicitly by physics-based equations
» Takes into account temperature effects due to different bandgap values

=> Accurate transfer current modeling by GICCR with physics-based charges, weight
factors, and parameters

1

| ° device simulation AN
|—GICCR |
10° ?---ideal (classical sol.)
< b
£ 10"
_|_ o

‘relative
error (%)

0.75 0.8 0.85 0.9
Ve V)

=> New version has been successfully applied to several recent technologies
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Mobile charges
» forward active bias mobile charge in HICUM

Mobile charges

10°
Or = 1 TAQp,+ AQy,
 corresponding transit time

« follows: Qf = j rfdiT'
0

« ccritical current /i

T, (pS)

» added parameter for better fitting to field depen-
dence of mobility.
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BC barrier effect

* In HICUM v2.30, the collector heterojunction barrier effect is modeled.
» Barrier effect becomes more pronounced in advanced SiGe HBT generations
« Formation of barrier in conduction band strongly related to Kirk-effect in well-designed HBT

=> more rapid increase of transit time beyond /-«
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BC barrier effect

Modeling the BC barrier effect
» Onset of barrier effect is still given by Ick (for a "well-designed" DHBT)

 barrier voltage (from bias dependent conduction band barrier):
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New mobile charge formulation at high injection

* Include barrier related base and collector charge terms explicitly:

Qrpn = AQpt ADp, , T AQpr +AD (.
%0
fh, c

 Barrier related base charge term calculated by
a bias dependent barrier voltage.

. AVC
AQBf, b~ TvaslT/{eXp(?T) - 1:|

with already existing T, = (1 -/, T cq

 Kirk-effect related transit times are "delayed" by
the formation of the barrier:

AV.—-V
. . C Cbhar
AOm, o = 1~'hC¢>~’TfW2‘3XP( v )

=> very accurate and flexible, and still backwards compatible
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Vertical NQS-effects

HICUM includes mobile charge and transfer current related NQS effects

=> modeled using polynomial approximation and separate networks

charge delay and input admittance  transfer current delay and transconductance
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=> Good agreement in small-signal and large-signal simulation
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Lateral NQS-effect

... caused by high-frequency emitter current crowding

: : . Crai
« theoretical solution only for small-signal b
case (and negligible DC current crowding) I
=> simple capacitance parallel to Rp;:
/ B* RBi B’
Crpi = JerBilCigi ¥ Cici T Capi T Caci) VRBi
* Verilog-A only allows adjunct network with ;
charge definition: Opp; = Crp:Vep OF 10
Orpi = JersiQigi T Qicit Capi * Caci)”? 100 L e
- latter leads to strong overestimation of the ~
: Q —Q__=C__V__
charge, current and admittance = 10~ CRBi “RBi"RBi
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Problems with implementation of lateral NQS-effect

... caused by undesired derivatives

* small-signal form of Qp 5. = Cpp; Vg in Verilog-A leads to

dQRBi _ d( CRBi VRBi)

dt dt

theoretical solution not present in small-
signal theory

=> undesired derivative from Verlog-A implementation constraints

» Also: undesired derivatives result in large overhead of compiled code since
dCgrgi/dVRpg; internally requires the calculation of the derivatives of all nonlinear

capacitances (incl. for Cyg;and Cyc))

« alternatives are presently under investigation
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Noise modeling

* New noise correlation model in v2.31 is valid at all frequencies
 physically connected to NQS effects => can use same delay time and assoc. parameters
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Self-heating

Self-heating

intra-device thermal coupling (self-heating) described by single-pole network

+ dissipated power: P = f(I; Vg, I, Igc, R, Re, Rex lavi)

« Based on observations of experimental data and solution of

heat transport equation:

RalT) = Ry(Ty) (7)™
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Numerical simulation
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« Temperature node also allows modeling of inter-device thermal coupling
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HICUM Workshop Summary on V2.31 extensions
Summary on V2.31 extensions
list of new model parameters and flags
Parameter Def. Description
dck 2 Fitting factor for Ik
ahiEi 0 Parameter describing the slope of hg(Vgg)
MhiEi 1 Smoothing parameter for h;z(Vge) at high voltage.
AVyge 0 Bandgap difference between base and BE-junction, used for hjgjg and hp.
ChjEi 1 Temperature coefficient for apg;.
CvgBE 1 Temperature coefficient for hjgo.
hg 1 Weight factor for the low current minority charge.
VeBar 0 Barrier voltage, =0 turns the model off.
acBar 0.01 Smoothing parameter for barrier voltage.
IcBar 0 Normalization parameter, =0 turns the model off.
Srn 0 Temperature coefficient for Ry,
FLCONO 0 High-frequency noise correlation flag
Kfe 0 R flicker noise coefficient
Afe 2 RE flicker noise exponent factor
TYPE 1 Flag for npn (1) and pnp (-1) transistors

© MS
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Experimental results

Technologies shown here

+ STBOMW  with ff,,,, = 200/300 GHz, Agg = 1x0.13x4.87 pm?
+ IHP SGB25V with f1/f,., = 75/95 GHz,  Agg = 1x0.64x12.68 pm?

+ IHP 500GHz with fy/f,,,, = 300/500 GHz, Agq = 8x0.12x0.96 pm?

=> Comparison over large bias, temperature, and geometry range

© MS 22



HICUM Workshop Experimental results

ST BOMW technology
Forward gummel characteristics for [-40, 27, 75, 125]°C.
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=> very good agreement over wide bias and T range
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ST technology (cont’d)
transit frequency for [-40, 27, 75, 125]°C.
300 \ \ R 300
N 200; ':Iﬁ:' 200¢ o
O, O,
100 100
0= -1 0 1 2 0°3 = 0 1 2
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2
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=> very good agreement over wide bias and T range
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Experimental results

ST technology (cont’d)
Maximum oscillation frequency for [-40, 27, 75, 125]°C.
400 300
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=> good agreement over wide bias and T range
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ST technology (cont’d)
Normalized transconductance for [-40, 27, 75, 125]°C.
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9 Vel
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=> very good agreement over wide bias and T range
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IHP SGB25V technology

Temperature dependence of forward Gummel characteristics
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=> very good agreement over wide bias and T range
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IHP SGB25V technology (cont’d)

geometry scaling of transit frequency
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=> good agreement over geometry and wide bias range
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IHP 500GHz technology

Temperature dependence of forward Gummel characteristics and transit frequency

‘ T w — 300
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=> very good agreement over wide bias and geometry range
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IHP 500GHz technology (cont’d)

power gain stability factor
3 T T T T T T T T T T T
° meas %
2 5l—maodel
3 Vge=075V] b
27 250 ¢ V.= 08V 1 &9
ol & Vgg= 09V |
—model o

not stable below peak ft

=> reasonable agreement over frequency and wide bias range
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IHP 500GHz technology (cont’d)

Large-signal results for Agg = 0.12 x ‘IOumz (4 in parallel)

harmonic distortion @ fy = 8GHz

20 w x
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of g
€
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=> very good agreement for dynamic characteristics
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Summary and conclusions

observation of various physical effects both in advanced technologies (during
DOTFIVE project) and other technologies measured in our lab

« HICUM/L2 v2.31 extensions
« BC barrier effect & improved description of material composition in transfer current and g,
» BC barrier effect in mobile charge
» temperature dependence of new parameters and of thermal resistance
* HF noise correlation model valid up to very high frequencies
» miscellaneous: flicker noise addition in RE, optimized NQS effect VA implement., pnp flag

 access to variety of (production) technologies for modle verification is very important
=> otherwise difficult to make a model widely applicable throughout industry

need better measurement capability for small- and large-signal model verification

Goal for InP HBTs: extend HICUM/L2

 add specific physical effects (as determined to be relevant)
* enable geometry scaling => circuit optimization and statistical modeling
 generate scalable HICUM/LO and distributed HICUM/L4 automatically from L2

=> offer unified and flexible HBT modeling strategy

© MS 32



HICUM Workshop Summary and conclusions

Acknowledgments

» IHP, Frakfurt/Oder, Germany
« ST Microelectronics, Grenoble, France

« EU CATRENE project RF2THzSiSoC

© MS 33



	Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31
	A. Pawlak, M. Schroter, A. Mukherjee, J. Krause
	Chair for Electron Devices and Integrated Circuits (CEDIC)
	Technische Universität Dresden, Germany
	pawlak@iee.et.tu-dresden.de, mschroter@ieee.com
	http://www.iee.et.tu-dresden.de/iee/eb/eb_homee.html
	12th HICUM Workshop, Newport Beach, CA (USA), 2012
	Outline
	• Introduction
	• HICUM equivalent circuit
	• Transfer current
	• Mobile charges
	• Vertical NQS-effects
	• Lateral NQS-effect
	• Noise modeling
	• Self-heating
	• Experimental results



	Introduction
	• Experimental results ...
	• from DOTFIVE project (3 different process generations of 3 different technology partners)
	• from characterizing other process types (production, high-voltage)

	=> observation of a variety of physical effects
	• some effects were difficult to describe with physics-based model parameters with existing v2.24

	=> motivation for extension to v2.31
	• heavy use of BTE, HD, DD device simulation for model development

	=> final verification always on experimental results
	=> this presentation: overview and details on v2.31 extensions

	HICUM equivalent circuit
	Transfer current
	... in HICUM is based on the GICCR
	• From 1D drift-diffusion-transport equation:
	• Weight functions hj and hv are 1 in the 1D case, c0 is a bias independent constant.
	• Weight function hg reads , with "r" as reference region
	• Reference region in HICUM is the neutral base: k represents the various regions in the transistor


	Transfer current related charge
	• Actual charge in the transistor is divided into zero-bias, depletion and mobile charge component:
	• Transfer current expression from GICCR:
	with weighted hole charge
	and weighted mobile charge (hf0 newly introduced in v2.3)
	,
	=> Transfer current is directly related to charges defined from small- and large-signal behavior

	GICCR allows taking into account material composition
	Si BJT SiGe HBT
	Low-current weight factors
	Si
	SiGe
	hjEi
	0.2
	1.0
	hjCi
	2.7
	2.4

	High-current weight factors
	Si
	SiGe
	hfE
	0.7
	31.3
	hfC
	1.9
	84.5
	hf0
	0.98
	5
	hfB
	1.1
	1.6

	(base as reference region)


	Normalized transconductance
	gm/(IC/VT) can be used to identify device non-ideality and to compare technologies
	• experimental observation: drop in normalized transconductance already at low to medium injection for some technologies.
	• cannot be described with simple (bias independent) reverse Early voltage models
	• From 1D device simulation: effect is directly related to Ge grading in BE-SCR
	=> explicitly included in v2.30: ,


	Transconductance at medium injection
	Stronger reduction of gm/(IC/VT) could not be described with meaningful Qp0 values
	• Need to keep physics-based value for Qp0 for accurate modeling of internal base (sheet) resistance => extract Qp0 from tetrodes rather than from transfer current.
	• For graded Ge, weighted mobile charge is much larger than actual mobile charge (mostly concentrated in neutral base) => need to introduce hf0:


	=> strongly improves gm modeling at medium bias

	Temperature dependence of new weight factors
	... due to bandgap differences
	• hjEi also incl. movement of SCR boundaries
	,
	• Medium-current weight factor
	• High-current weight factor



	Results
	• Physics-based extensions in v2.30 and v2.31
	• Material composition related effects modeled explicitly by physics-based equations
	• Takes into account temperature effects due to different bandgap values

	=> Accurate transfer current modeling by GICCR with physics-based charges, weight factors, and parameters
	=> New version has been successfully applied to several recent technologies

	Mobile charges
	• forward active bias mobile charge in HICUM
	• corresponding transit time
	• follows:

	• ccritical current ICK
	• added parameter for better fitting to field dependence of mobility.
	• default dCK=2
	• parameter allows better fitter for, e.g., pnp


	BC barrier effect
	• In HICUM v2.30, the collector heterojunction barrier effect is modeled.
	• Barrier effect becomes more pronounced in advanced SiGe HBT generations
	• Formation of barrier in conduction band strongly related to Kirk-effect in well-designed HBT

	=> more rapid increase of transit time beyond ICK
	• Influence of heterojunction position on barrier effect
	• Close to BC-junction -> related to Kirk-effect
	• Far in the collector -> at too high (i.e. irrelevant) currents



	Modeling the BC barrier effect
	• Onset of barrier effect is still given by ICK (for a "well-designed" DHBT)
	• barrier voltage (from bias dependent conduction band barrier):
	with
	• New parameters: VcBar, IcBar, acBar


	New mobile charge formulation at high injection
	• Include barrier related base and collector charge terms explicitly:
	• Barrier related base charge term calculated by a bias dependent barrier voltage.
	with already existing

	• Kirk-effect related transit times are "delayed" by the formation of the barrier:

	=> very accurate and flexible, and still backwards compatible

	Vertical NQS-effects
	HICUM includes mobile charge and transfer current related NQS effects
	=> Good agreement in small-signal and large-signal simulation

	Lateral NQS-effect
	... caused by high-frequency emitter current crowding
	• theoretical solution only for small-signal case (and negligible DC current crowding) => simple capacitance parallel to RBi:
	• Verilog-A only allows adjunct network with charge definition: or ?
	• latter leads to strong overestimation of the charge, current and admittance
	• present solution ONLY valid for small-signal operation and not too high frequencies


	Do NOT use for large-signal operation!!
	=> still under investigation
	• Feedback from circuit design?

	Problems with implementation of lateral NQS-effect
	... caused by undesired derivatives
	• small-signal form of in Verilog-A leads to

	=> undesired derivative from Verlog-A implementation constraints
	• Also: undesired derivatives result in large overhead of compiled code since dCRBi/dVRBi internally requires the calculation of the derivatives of all nonlinear capacitances (incl. for CdEi and CdCi)
	• alternatives are presently under investigation


	Noise modeling
	• New noise correlation model in v2.31 is valid at all frequencies
	• physically connected to NQS effects => can use same delay time and assoc. parameters

	• Additional flicker noise contribution for emitter resistance RE

	Self-heating
	intra-device thermal coupling (self-heating) described by single-pole network
	• dissipated power: P = f(IT, VCEi, IBE, IBC, RB, RE, RCX, IAVL)
	• Based on observations of experimental data and solution of heat transport equation:
	• Temperature node also allows modeling of inter-device thermal coupling


	Summary on V2.31 extensions
	list of new model parameters and flags
	Parameter
	Def.
	Description
	dCK
	2
	Fitting factor for ICK
	ahjEi
	0
	Parameter describing the slope of hjEi(VBE)
	rhjEi
	1
	Smoothing parameter for hjEi(VBE) at high voltage.
	DVgBE
	0
	Bandgap difference between base and BE-junction, used for hjEi0 and hf0.
	zhjEi
	1
	Temperature coefficient for ahjEi.
	zVgBE
	1
	Temperature coefficient for hjEi0.
	hf0
	1
	Weight factor for the low current minority charge.
	VcBar
	0
	Barrier voltage, =0 turns the model off.
	acBar
	0.01
	Smoothing parameter for barrier voltage.
	icBar
	0
	Normalization parameter, =0 turns the model off.
	zrth
	0
	Temperature coefficient for Rth
	FLCONO
	0
	High-frequency noise correlation flag
	KfrE
	0
	RE flicker noise coefficient
	AfrE
	2
	RE flicker noise exponent factor
	TYPE
	1
	Flag for npn (1) and pnp (-1) transistors


	Experimental results
	Technologies shown here
	• ST B9MW with fT/fmax = 200/300 GHz, AE0 = 1x0.13x4.87 mm2
	• IHP SGB25V with fT/fmax = 75/95 GHz, AE0 = 1x0.64x12.68 mm2
	• IHP 500GHz with fT/fmax = 300/500 GHz, AE0 = 8x0.12x0.96 mm2

	=> Comparison over large bias, temperature, and geometry range

	ST B9MW technology
	Forward gummel characteristics for [-40, 27, 75, 125]°C.
	=> very good agreement over wide bias and T range

	ST technology (cont’d)
	transit frequency for [-40, 27, 75, 125]°C.
	=> very good agreement over wide bias and T range

	ST technology (cont’d)
	Maximum oscillation frequency for [-40, 27, 75, 125]°C.
	=> good agreement over wide bias and T range

	ST technology (cont’d)
	Normalized transconductance for [-40, 27, 75, 125]°C.
	=> very good agreement over wide bias and T range

	IHP SGB25V technology
	Temperature dependence of forward Gummel characteristics
	=> very good agreement over wide bias and T range

	IHP SGB25V technology (cont’d)
	geometry scaling of transit frequency
	=> good agreement over geometry and wide bias range

	IHP 500GHz technology
	Temperature dependence of forward Gummel characteristics and transit frequency
	=> very good agreement over wide bias and geometry range

	IHP 500GHz technology (cont’d)
	power gain stability factor
	=> reasonable agreement over frequency and wide bias range

	IHP 500GHz technology (cont’d)
	Large-signal results for AE0 = 0.12 x 10mm2 (4 in parallel)
	=> very good agreement for dynamic characteristics

	Summary and conclusions
	• observation of various physical effects both in advanced technologies (during DOTFIVE project) and other technologies measured in our lab
	• HICUM/L2 v2.31 extensions
	• BC barrier effect & improved description of material composition in transfer current and gm
	• BC barrier effect in mobile charge
	• temperature dependence of new parameters and of thermal resistance
	• HF noise correlation model valid up to very high frequencies
	• miscellaneous: flicker noise addition in RE, optimized NQS effect VA implement., pnp flag

	• access to variety of (production) technologies for modle verification is very important => otherwise difficult to make a model widely applicable throughout industry
	• need better measurement capability for small- and large-signal model verification
	• Goal for InP HBTs: extend HICUM/L2
	• add specific physical effects (as determined to be relevant)
	• enable geometry scaling => circuit optimization and statistical modeling
	• generate scalable HICUM/L0 and distributed HICUM/L4 automatically from L2

	=> offer unified and flexible HBT modeling strategy
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