Parameter extraction - methods and status

J. Krause, A. Pawlak, M. Schroter
Chair for Electron Devices and Integrated Circuits (CEDIC)
University of Technology Dresden, Germany

krause@iee.et.tu-dresden.de
http://www.iee.et.tu-dresden.de/iee/eb/eb_homee.html

12th HICUM Workshop, Newport Beach, CA (USA), 2012

Outline

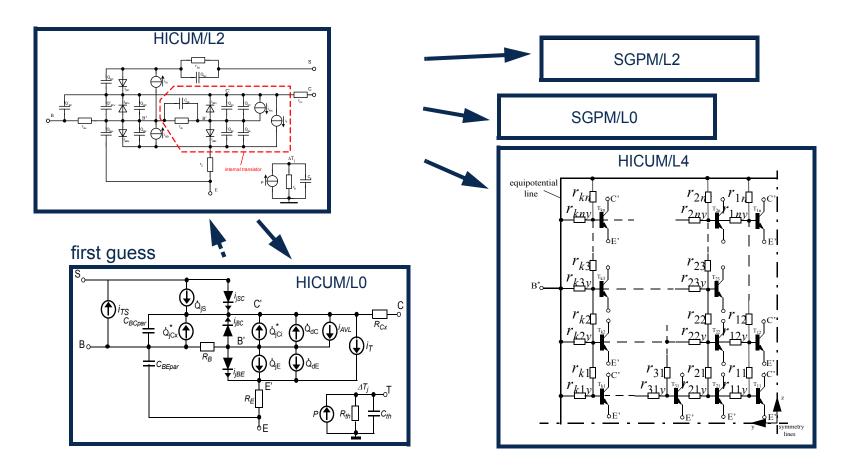
- Introduction
- Extraction flow
- Basic concepts
- List of test structures
- Joint extraction of RE and Rth
- Transit times
- Transfer current
- Summary

HICUM Workshop Introduction

Introduction

 increasing number of physical effects and demand for highly accurate large- and small-signal compact models increases model complexity

- ⇒ increased number of model parameters and correlation between physical effects
- ⇒ parameter extraction becomes more difficult and effort increases
- model requirements from circuit design
 - accurate and valid over wide electrical, temperature, frequency, and geometry range
 - · fast execution and numerically reliable
- requirements for parameter extraction
 - well-defined, sufficiently simple, fast and reliable procedures
 - standard measurement equipment should be sufficient for data acquisition
 - as small as possible model parameter correlation
 - clear and reliable procedures for parameter extraction
 - extraction procedues as automated as possible
- this presentation
 - review of general basic concepts and gerenal extraction flow
 - detailed discussion of extraction method for parameters of new HICUM/L2 version 2.31

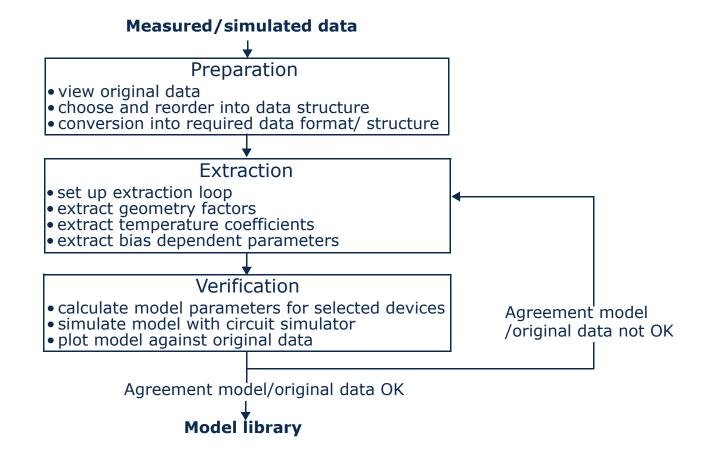

HICUM Workshop

Introduction

Motivation

• Different model levels for finding a trade-off between calculation effort and accuracy

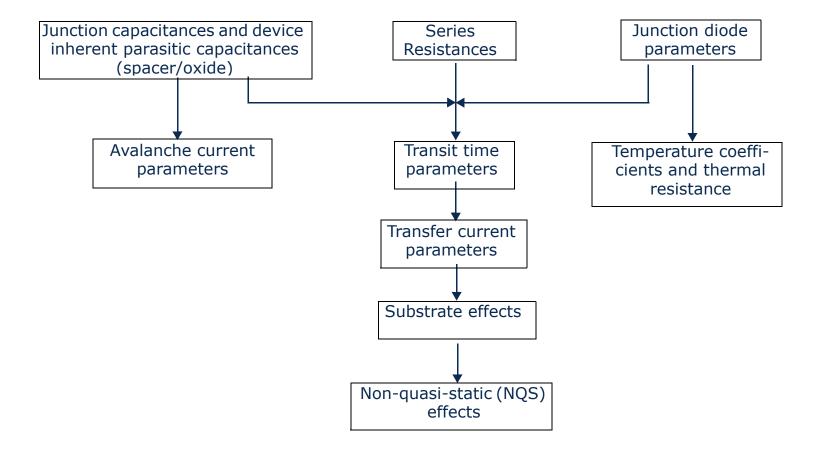
 based on one compact model as physics-based and accurate as possible for generating the other model levels



HICUM Workshop Extraction flow

Extraction flow

General methodology


- based on a set of data from measurements or simulation
- must be compared to results of compact model simulations

HICUM Workshop Extraction flow

Extraction methodology for HICUM

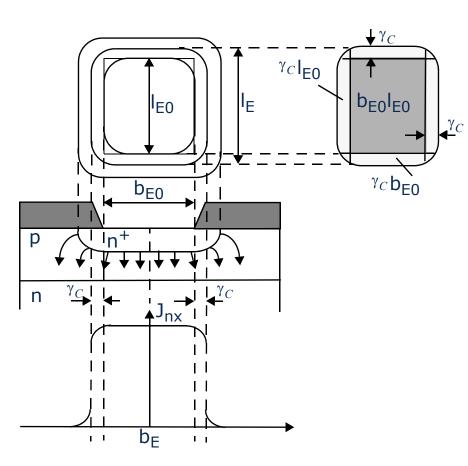
- depending on availability of test structures and different geometries
- sequence for process-based geometry scalable model parameter extraction for HICUM/L2

HICUM Workshop

Extraction flow

Single geometry vs. scalable extraction

- conventional method (single geometry fitting)
 - no information on geometry effects, necessitating
 - (a) simplified equivalent circuit and model \Rightarrow loss of accuracy
 - (b) non-physical model parameters (through optimization, merging ...)
 - every transistor required (= anticipated) for circuit design has to be available on the wafer
 - requires "golden" wafer
 - => no scaling and statistical modeling, no circuit optimization, large extraction effort
- process-based scalable approach
 - employs variety of transistors and special test structures => linear independent parameter extraction
 - requires somewhat higher initial investment: "few" devices have to be measured before the first parameter set can be generated => but very efficient model generation afterwards
 - physical values => enables statistical modeling and shift to nominal parameters
 - => enables scaling, statistical modeling, circuit optimization, significant reduction of overall extraction effort for foundries
- scaling helps to understand physical effects and their geometry dependence
 - ⇒ process-based scalable approach also aids process development


HICUM Workshop

Basic concepts

Basic concepts

Geometry Scaling

• γ_C , γ_R - factors for taking into account collector and emitter perimeter related current

- single transistor representation
- lumping area and perimeter related portions of collector current into a single component

 \Rightarrow effective emitter area A_E :

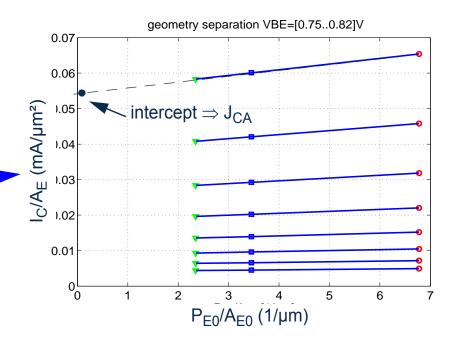
$$A_E = A_{E0} + \gamma_C P_{E0}$$
 with $\gamma_C = \frac{J_A}{J_P}$

effective dimensions b_E, I_E:

$$b_E = b_{E0} + 2\gamma_C$$
 and $l_E = l_{E0} + 2\gamma_C$

- include emitter corner rounding where required
- similar definition for γ_B , γ_{iE}

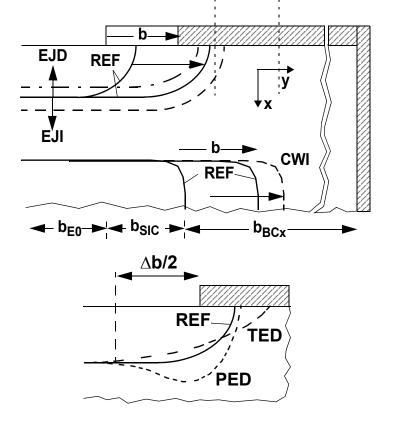
Standard geometry scaling


- Determination of process specific parameters
- Example: base current component from BE diode
 - Investigation of the characteristics, where only one junction is biased \Rightarrow set V_{BC} =0V \Rightarrow BE diode
 - use *long* structures for the extraction (i.e. I >> b)
 - scaling equations can be simplified to

$$I = J_A A + J_P P$$

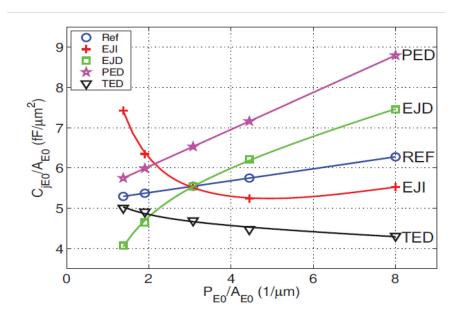
 \Rightarrow area normalization: $\frac{I}{A} = J_A + J_P \frac{P}{A}$

- · J_A from extrapolated intercept with y axis
- J_P from slope
- apply same concept to charges and capacitances


⇒ determine process specific area and perimeter portion by simple linear regression

HICUM Workshop Basic concepts

Geometry scaling pitfalls


standard scaling

 linear scaling of electrical parameters of the internal transistor with emitter dimensions

non-standard scaling

- may lead to non-linear scaling with emitter dimensions or linear scaling with different (apparent) area and perimeter parameters
- caused by a variety of effects and fabrication conditions

=> can cause significant additional effort for accurate scaling

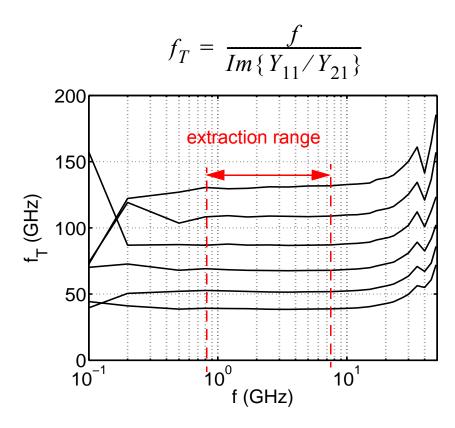
HICUM Workshop

Basic concepts

Frequency range selection

... for determining dynamic quantities from measured data

$$C_{jE} = \frac{Im\{Y_{11} + Y_{12}\}}{\omega}$$
150
extraction range
$$100$$


$$50$$

10⁰

f (GHz)

10¹

0 10⁻¹

- too low frequency: measurement inaccurate (noisy) and self-heating effects
- too high frequency: influence of RC time constants \Rightarrow decrease in C_{BE}, increase in f_T
- Note: frequency range needs to be adapted to process performance

HICUM Workshop List of test structures

List of test structures

Special test structures

Туре	Pad	Comments
Tetrodes - internal base sheet resistance - Q _{p0}	DC [AC]	- at least three (better four) widths: $b_{E0min} \geq 4^*b_{E0min}$ - two different lengths for at least one width - structure with b_{E0} =0µm if possible \Longrightarrow base link
External base sheet resistance: - base contact resistance - silicided sheet resistance - poly-on-mono sheet resistance - poly-on-oxide sheet resistance [- base link resistance]	DC	necessary for extracting the external components of the base resistance and the scaling for different contact configurations and layouts later on - poly-on-mono and -oxide not required if fully silicided
Collector resistance components - buried layer - sinker and collector contact	DC	necessary for geometry scaling of collector resistance
Electro-thermal modeling	AC	verification of correct self-heating extraction and modeling of thermal coupling

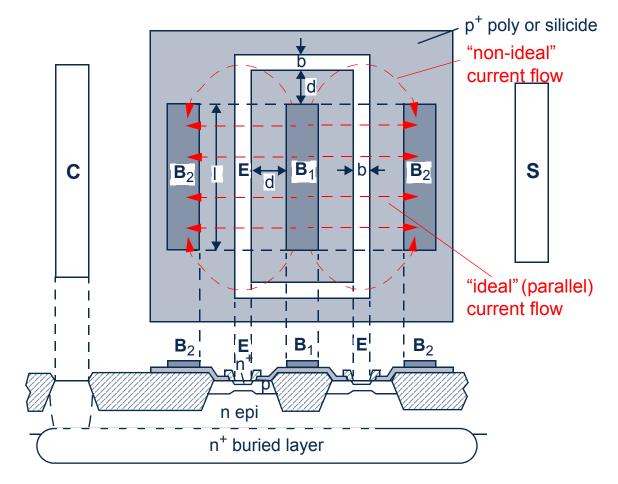
Note: these structures can also be used as process control monitors

⇒ *linear independent* extraction of external/parasitic parameters and elements

HICUM Workshop

List of test structures

List of test structures (cont'd)


npn transistors

Туре	Pad	Comments
Long transistors with different emitter width in CBEBC configuration	AC	basic set for scalable parameter extraction \Rightarrow 35 widths with $b_{E0min} \ge 4*b_{E0min}$: - use for CV, DC and transit times - can also be used for R_E extraction
short transistors with typical dimensions for circuit design	AC	for verifying geometry scaling (e.g. BEC,)
CEB transistors	AC	single base transistors with b_{E0min} \Rightarrow geometry scaling of r_B
CBEBEBC transistors	AC	double-emitter transistors with b_{E0} = min, max \Rightarrow verification, finger and parameter scaling
Power cells: arrays of power transistors	AC	multi-emitter transistor arrays ⇒ for application and verification of distributed scalable modeling (HICUM/L4)
Deembedding structures: Open, Short, Through	AC	for transistors above, depend on pad layout and device size

HICUM Workshop

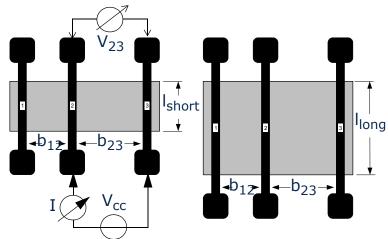
List of test structures

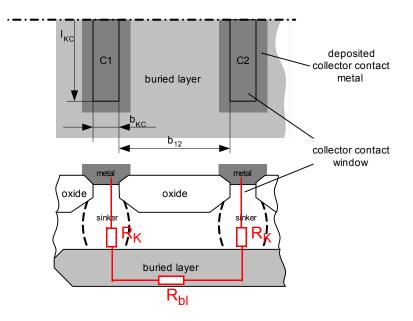
Tetrode structure

- emitter encloses base contact B₁ ⇒ no current flow through base poly between B₁ and B₁
- current between B₁ and B₂ is forced to flow underneath the emitter
- 2 different lengths
 ⇒ correction of current
 spreading at the edges
- total resistance measured

$$R = \frac{\Delta V_{B2B1}}{\Delta I} = r_x + \frac{r_{SBi}b_{E0}}{2\Delta l}$$

r_x: sum of all external resistance components


- application
 - extraction of base sheet resistance components (internal, link) and Q_{p0}
 - process control monitor for base region


HICUM Workshop

List of test structures

Resistor structures

chains with 3...4 Kelvin contacts and two different lengths (I >> b_{contact})

 apply voltage between two terminals i and j:

$$R_{ij} = \frac{V_{ij}}{I_{ij}} = 2R_K + R_{bl, ij} = 2\frac{r_{KC}}{l} + r_{Sbl}\frac{b_{ij}}{l}$$

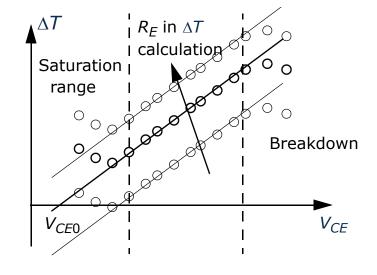
 subtracting current of short from that of long structure removes non-ideal edge current

$$R_{\Delta ij} = \frac{V_{ij}}{I_{ij, long} - I_{ij, short}} = 2\frac{r_{KC}}{\Delta l} + r_{Sbl}\frac{b_{ij}}{\Delta l}$$

 edge corrected resistances for two pairs of terminals allow to determine sheet resistance...

e.g.,
$$r_S = (R_{\Delta 23} - R_{\Delta 12}) \frac{\Delta l}{b_{23} - b_{12}}$$

...and length specific contact resistance

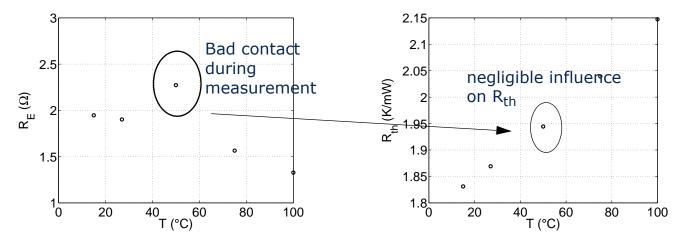

HICUM Workshop

Joint extraction of RE and Rth

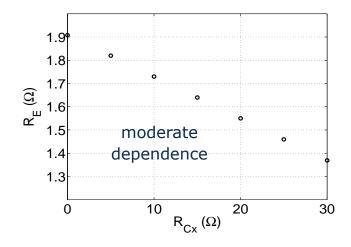
Joint extraction of R_E and R_{th}

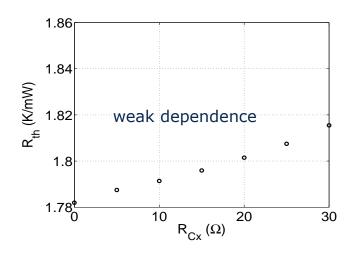
- Based on simplified self-heating model $\Delta T = R_{th}I_C(V_{CE} R_EI_E R_{Cx}I_C)$
- Variables to be known:
 - From measurement: I_C , I_E , V_{CE} , also needed: I_B , V_{BE}
 - From test structures or assumption: R_{Cx}
- Method:
 - Measurement of output characteristics with fixed I_C (or forced I_B)
 - Calculation of ΔT from measured V_{BE} and I_{B} and known dependence $I_{B}=I_{BES}(T)\exp\Bigl(\frac{V_{BE}-R_{E}I_{E}}{V_{T}(T)}\Bigr)$
 - In forward active operating range, almost linear dependence $\Delta T(V_{CF})$
 - Linear extrapolation to ΔT =0 \Longrightarrow from equation above it follows from R_{th} >0 and I_C >0

$$V_{CE0} - R_E I_E - R_{Cx} I_C = 0 \implies R_E = \frac{V_{CE0} - R_{Cx} I_C}{I_E}$$


- BUT: R_E already used for calculation of $\Delta T \Rightarrow$ Iteration for R_E
- Calculation of R_{th} from slope of $\Delta T(V_{CE})$

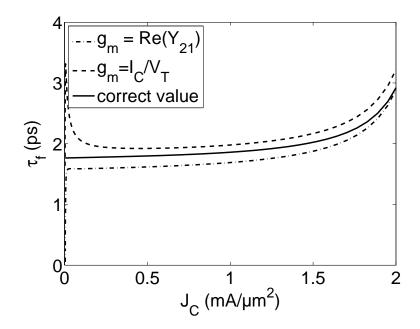
HICUM Workshop


Joint extraction of RE and Rth


Results of combined R_E and R_{th} extraction

Extraction for all temperatures separately

• Influence of uncertainties of previously extracted R_{Cx}

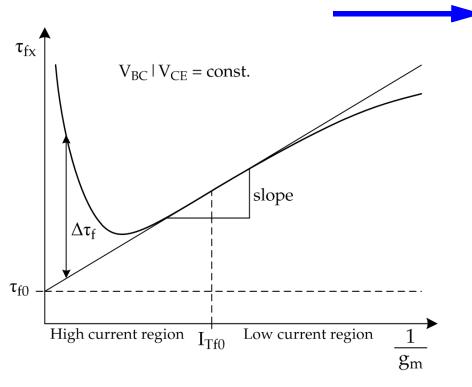

HICUM Workshop Transit times

Transit times

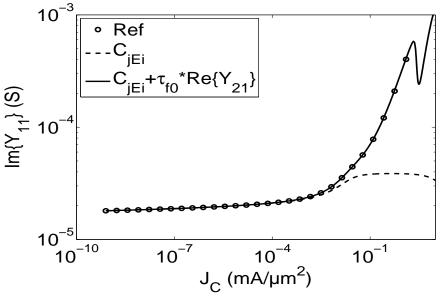
• Determination of transit time τ_f from measurements:

$$\tau_f(V_{BCi},i_{Tf}) = \frac{1}{2\pi f_T} - (R_E + R_{Cx})C_{BC} - \sum \frac{C_{BB}}{g_m} \;, \; \; C_{BB} = \text{sum of all capacitances at B node}$$

• transconductance: $g_m = I_T/V_T$ (classical method) or $g_m = \lim_{f \to 0} Y_{21}(f)$.


- However: both g_m approaches lead to errors due to inconsistency of equation itself
 - ⇒ need to use complete deembedding of internal transistor according to compact model equivalent circuit
 - includes all parasitic time constants and impact of frequency dependence
- also: need to include bias dependence of (internal) depletion capacitances

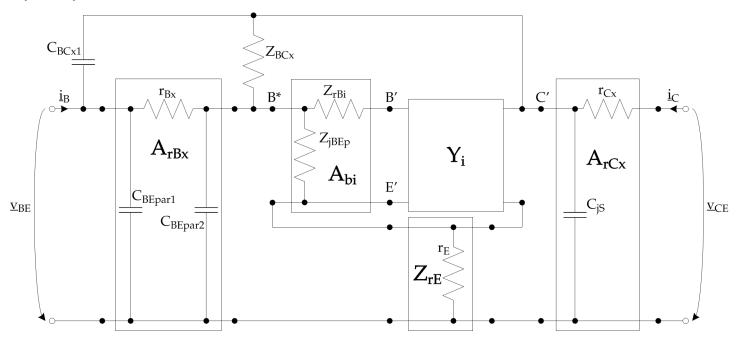
⇒ consistent deembedding method has been implemented and used


HICUM Workshop Transit times

Extraction of τ_{f0} .

• Classical method uses linear extrapolation of $\tau_f(1/I_C)$ curve and a_{jEi} from slope at inflection point.

- Better: global fit of deembedded Y_{11} with $C_{i E i}$ and τ_{f0} in the medium current range
 - g_m = Re{Y₂₁} holds for each frequency for deembedded Y₂₁
 - No influence of time constants caused by series resistances
 - Fitting of a_{jEi} and τ_{f0} for the best agreement of resulting capacitance


=> consistency is key to accurate modeling

HICUM Workshop

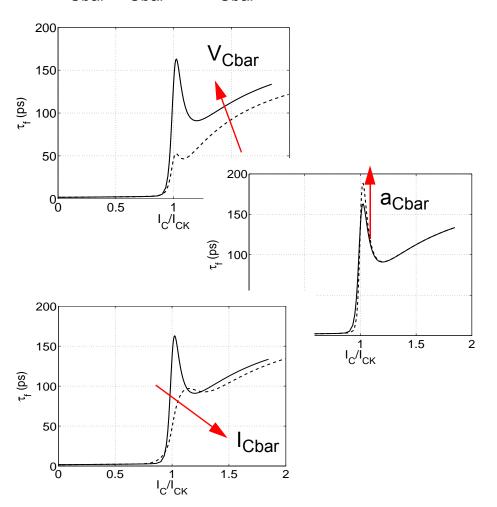
Transit times

Deembedding of internal transistor

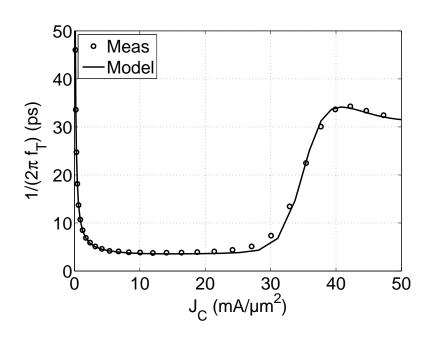
• use two-port parameters of each external element.

example for deembedding of (impact of) R_E:

$$Z_{rE} = \begin{bmatrix} R_E & R_E \\ R_E & R_E \end{bmatrix}$$
 and $Z_{int} = Z_{ext} - Z_{rE}$



HICUM Workshop


Transit times

Extraction of barrier effect

- three model parameters
 - V_{Cbar}, a_{Cbar} and I_{Cbar} => shape of barrier effect.

Application to measurements

=> new formulation captures shape more accurately for HBTs

HICUM Workshop Transfer current

Transfer current

forward bias (V_{CE} ≥ 0.2V) HICUM/L2 transfer current equation reads:

$$I_T = \frac{c_{10}}{Q_{p0} + h_{jEi}Q_{jEi} + h_{jCi}Q_{jCi} + Q_{fT}} \exp\left(\frac{V_{BEi}}{V_T}\right)$$

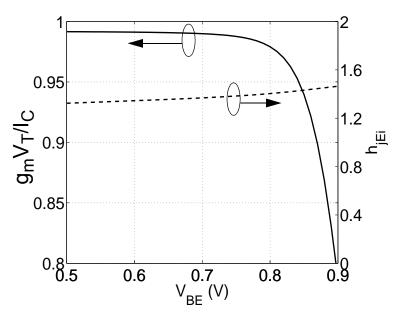
weighted minority charge is composed of different portions:

$$Q_{fT} = h_{f0}\tau_{f0}i_{Tf} + h_{fE}\Delta Q_{Ef} + \Delta Q_{Bf} + h_{fC}\Delta Q_{Cf}$$

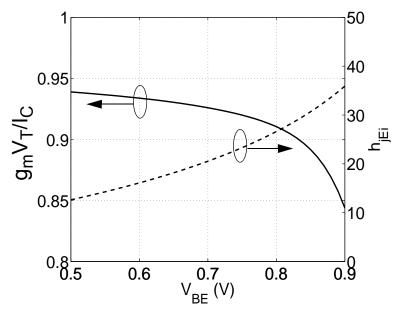
⇒ Transfer current is related to the small signal parameters!

- extracted model parameters:
 - GICCR constant c₁₀
 - Weight factors h_{iEi}, h_{iCi}, h_{fO}, h_{fE}, h_{fC}
- required:
 - all parameters for C_{iEi} and C_{iCi} including temperature dependence
 - all parameters for the minority charges
 - Q_{p0} from tetrode measurements
 (⇒ may be set to arbitrary value, but this will lead to small deviations and also incorrect modeling of internal base resistance)

HICUM Workshop


Transfer current

Low current region ⇒ parameters c₁₀, h_{jEi}


• extraction of bias dependent or bias $independent h_{jEi}$ depending on normalized g_m

$$\frac{g_m}{I_T/V_T} = 1 - \frac{V_T}{Q_{pT}} \frac{dQ_{pT}}{dV_{BEi}} \bigg|_{V_{CE}} \quad \text{with} \quad \frac{dQ_{pT}}{dV_{BEi}} \bigg|_{V_{CE}} = h_{jEi} C_{jEi} + Q_{jEi} \frac{dh_{jEi}}{dV_{BEi}}$$

and
$$h_{jEi} = h_{jEi0} [\exp(u) - 1]/u$$
 with $u = a_{hjEi} (1 - (V_{BEi}/V_{DEi})^{z_{Ei}})$

normalized g_m is bias *independent* => h_{iEi} = const, a_{hiEi} = 0

normalized g_m is bias dependent => $h_{jEi}(V_{BEi})$, $a_{hjEi} > 0$

HICUM Workshop

Transfer current

Reverse Early effect

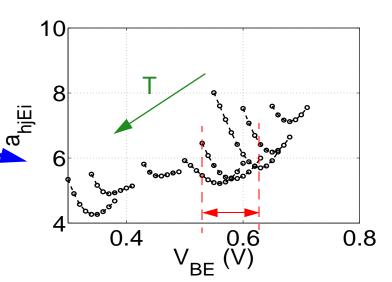
• In case of a_{hjEi} > 0 \Rightarrow separate extraction at low injection (V_{BEi} = V_{BE}) and V_{BC} =0

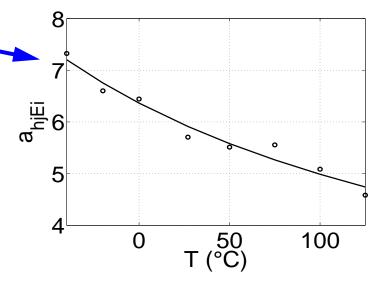
$$\text{set } I_S = \frac{c_{10}}{Q_{p0}}, \quad h(V_{BE}) = \frac{h_{jEi}(V_{BE})}{h_{jEi0}}, \quad V_{Er} = \frac{Q_{p0}}{h_{jEi0}C_{jEi0}}, \quad v_j = \frac{Q_{jEi}(V_{BE})}{C_{jEi0}}$$

$$\Rightarrow I_T = I_C = \frac{I_S}{1 + h(V_{BE})v_j(V_{BE})/V_{Er}} \exp\left(\frac{V_{BE}}{V_T}\right) \Rightarrow V_{Er} + hv_j = \frac{V_{Er}I_S \exp(V_{BE}/V_T)}{I_C}$$

• unknown constants V_{Er} and I_{S} can be removed by using four combinations of $I_{C}(V_{BE})$ values

$$\frac{h(v_1, a_{hjei})v_j(v_1) - h(v_2, a_{hjEi})v_j(v_2)}{h(v_3, a_{hjEi})v_j(v_3) - h(v_4, a_{hjEi})v_j(v_4)} = \frac{\left(\frac{\exp(V_{BE1}/V_T)}{I_{C1}} - \frac{\exp(V_{BE2}/V_T)}{I_{C2}}\right)}{\left(\frac{\exp(V_{BE3}/V_T)}{I_{C3}} - \frac{\exp(V_{BE4}/V_T)}{I_{C4}}\right)}$$

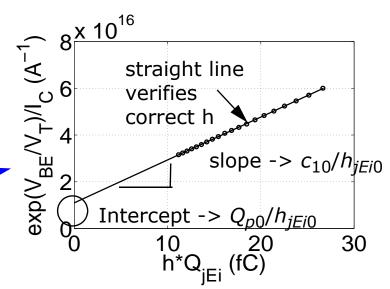

- $\Rightarrow a_{hiEi}$ can now be calculated by solving non-linear equation above
- Note: differences between voltages may not be too small to avoid errors due to noise. In practical application, ΔV_{BE} =30 mV between each voltage was sufficient.

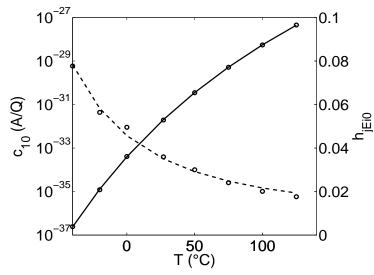

Extraction of a_{hjEi}

- extraction bias range criteria
 - V_{BE} large enough ⇒ avoid too noisy results
 - V_{BE} low enough \Rightarrow avoid errors due to highcurrent effects and self-heating
 - sweep center point within bias region
 - \Rightarrow a_{hiEi} = average within region
- perform extraction for each temperature
 - bias range to be adapted to temperature
 - ⇒ temperature dependence of a_{hiEi}
 - extraction of temperature coefficient ζ_{hjEi} according to model equation

$$a_{hjEi}(T) = a_{hjEi}(T_0) \left(\frac{T}{T_0}\right)^{\zeta_{hjEi}}$$

⇒ good agreement

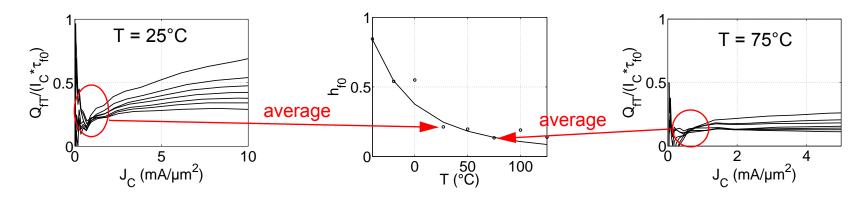

Extraction of h_{jEi0} and c₁₀


Rewrite transfer current (at low injection):

$$hQ_{jEi} = -\frac{Q_{p0}}{h_{jEi0}} + \frac{c_{10}}{h_{jEi0}} \frac{\exp(V_{BE}/V_T)}{I_T}$$

- h = 1 for $a_{hjEi} = 0$ or $h(a_{hjEi}, V_{BEi})$ for $a_{hjEi} > 0$
- plot $\frac{\exp(V_{BEi}/V_T)}{I_T}$ vs. hQ_{jEi}
- from linear fit:
 - h_{jEi0} from intercept with y-axis and known Q_{p0}
 - c_{10} from slope and known h_{jEi0}
- performed for each temperature \Rightarrow extract $\Delta V_{\rm gBE}$ and $\zeta_{\rm vgBE}$ from

$$h_{jEi0}(T) = h_{jEi0}(T_0) \exp\left(\frac{\Delta V_{gBE}}{V_T} \left(\left(\frac{T}{T_0}\right)^{\zeta_{vgBE}} - 1\right)\right)$$

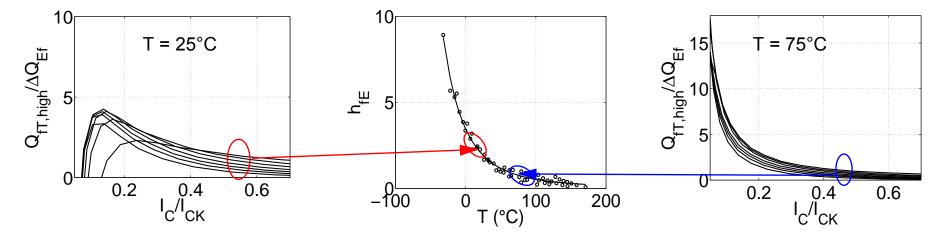

HICUM Workshop Transfer current

Extraction of mobile charge weight factor h_{f0}

- For reliable results, device temperature needs to be calculated:
 - $\Delta T = I_T V_{CEi} R_{th}$ with $I_T = I_C$ from measurements \Rightarrow non-linear equation $I_C (V_{CE} I_C r_{Cx} (\Delta T) I_E r_E (\Delta T)) R_{th}$ solved at each bias point

• at
$$T = T_0 + \Delta T \Rightarrow Q_{pT}(T) = \frac{c_{10}(T) \exp(V_{BEi}/V_T)}{I_C}$$
 with $V_{BEi} = V_{BEi} - I_B R_B(T) - I_E R_E(T)$

- mobile charge for each operating point
 - $Q_{fT} = Q_{pT} Q_{p0}(T) h_{jEi}(V_{BEi}, T)Q_{jEi}(V_{BEi}, V_T) h_{jCi}Q_{jCi}(V_{BCi}, T)$ @ $V_{BCx} = 0$
 - $\bullet \ \, \text{Extraction of} \ h_{f0} \, = \, \lim_{I_T \, \to \, 0} \frac{Q_{fT}}{I_T \tau_{f0}} \, = \, h_{f0}(T_0) \exp \Bigl(\frac{\Delta V_{gBE}}{V_T} \Bigl(\frac{T}{T_0} 1 \Bigr) \Bigr) \ \, \text{for each temperature}$


HICUM Workshop

Transfer current

Extraction of h_{fE}

• calculate $h_{fE} = Q_{fT,\,high}/\Delta Q_{Ef}$ with $Q_{fT,\,high} = Q_{fT} - h_{f0} \tau_{f0} I_C$ at each temperature T

- different device temperature due to impact of self-heating \Rightarrow several h_{fE} for each ambient temperature
- plot h_{fE} vs. I_C/I_{CK}

- select bias range where ΔQ_{Ef} has largest influence (e.g. I_T/I_{CK} =0.5) => h_{fF} = from each curve with corresponding self-heating corrected temperature
- apply similar procedure for extraction of h_{fC}

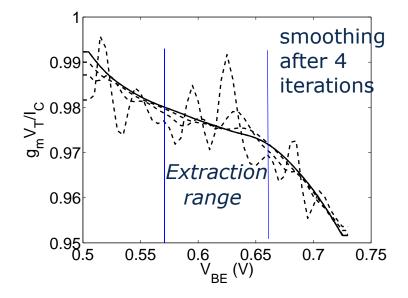
HICUM Workshop Summary

Summary

 increasing number of physical effects and demand for highly accurate large- and small-signal compact models increases model complexity

- ⇒ increased number of model parameters
- ⇒ increased parameter extraction effort
- automated extraction procedure and method depository ⇒ reliable results
- inaccurate models can result from (in this priority)
 - inaccurate or inconsistent determination of device quantities (e.g. transit time)
 - inadequate parameter extraction methods (e.g. scalable vs. single device)
 - inaccurate measurements
 - inadequate model equations

Note:


- extraction methods and procedures depend on model equivalent circuit (e.g., the base impedance value is different in different models)
- use (linear) independent measurements as much as possible for obtaining physically correct parameter values (e.g. cannot extract R_B, R_{CX}, parasitic caps from single device structure)
- not all model parameters are needed for every process technology!
 - ⇒ you need to know which effects are relevant for your process and designers
 - ⇒ helps reducing parameter extraction effort

HICUM Workshop

Summary

Smoothing of noisy measurement data

• smoothing method used: square interpolation

• Smoothing of noisy collector current based on normalized transconductance.