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Introduction

Introduction

• III/V DHBTs are the fastest bipolar transistors with lab devices showing fmax > 1 THz

• Dedicated III/V compact models exist, however
• usually based on SGPM core
• either missing important physical effects (included in HICUM) 
• or lacking physics-based description and parameters allowing statistical modeling

• Modeling in III/V community often reduced to parameter fitting of single devices 
• inaccurate
• limited bias and frequency range
• no physics-based parameters 

       => No truly physics-based geometry scalable models known to be in use

=>  circuit optimization and process exploitation severely constrained 

=> HICUM enables III/V circuit designers to make better use technology!
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Dedicated test structures

Dedicated test structures
Purpose: process and physics-based linearly independent determin. of EC elements

• Dedicated test structures common in SiGe, but usually only limited set (TLMs) used
in III/V technology

• Several SiGe structures cannot be used in III/V technology => need for redesign

• Example: tetrode structure 
• extraction of RBi (RSBi) and RCx 
• realized as walled emitter 

• also realized:
• RBx contact resistance
• direct measurement of RCx and its

components
• thermal coupling structures
• large-area and multi-finger junction

capacitance structures
• multi-finger transistors
• PA verification circuits

=>
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Device Structure

Device Structure
• Determination of actual vs. drawn device dimensions via FIB probe preparation and

SEM/TEM pictures.

• Drawn dimensions differ strongly from actual dimensions (> 10%) 
• Can cause large deviations in effective electrical emitter area and external base resistance

          =>  incorrect specific electrcial parameters (J, C) and geometry scaling 

• Most important
dimensions:
emitter junction
width (bE0) and
length (lE0) bE0

lE0
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Model results

Model results
• good scalability with emitter width and length observed for most parameters 

• issues
• IBC essentially not scalable, IBE only in medium to high bias region 
• process variations (although influence on figures-of-merit comparatively small)

Extracted (x) and interpolated 
(line) emitter resistance

Thermal resistance from extrac-
tion (x), 3D thermal simulation (O) 
and geometry scalable model (^)

Variation of external base sheet 
resistance for wafer measured 
over 15 dies
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Model results

Current scaling
• standard method (P/A separation) does not work for available structures

(identified cause: emitter edge current crowding, corner rounding in short devices)

• collector current scaling:     =>  

• use long devices to maximize accuracy

• Base current scales only in medium to high bias region

IC IC0 ICAAE0 ICPPE0+ += IC ICAAE ICPPE+=

Standard P/A separation for 
collector current, VBE = 0.6 V

Standard P/A separation for 
base current, VBE = 0.6 V

Best fit for collector current
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Model results

Geometry scaling: bias dependent characteristics
• Comparison of model results for transistors of nominal length 15 µm at 300K

=>  good agreement achieved for all devices 

Collector current at VBC = 0 transit frequency at VBC = 0 

bE0

bE0
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Model results

Geometry scaling: bias dependent characteristics
• Comparison of model results for transistors of nominal length 15 µm at 300K

y parameters at VBC = 0 

=>  good agreement achieved for all devices 

in all figures: bE0 = (0.5, 0.8, 1, 1.5, 2)μm 

transconductance current dependent 
BC capacitance

current dependent 
Im(y22)
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Model results

Bias dependent characteristics
• Comparison of model results and measurement for selected device with 

                                                 AE0 = 0.8x15 µm² 

=> good agreement over wide current and voltage range

transit frequency

VBC = (-0.25, 0, 0.1, 0.2 0.3 0.4 0.5) V

output characteristics

VBE = (0.8, 0.815, 0.83, 0.845, 0.86) V

meas
model
model w/o s.h.

meas
model
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Model results

Power gain
• Comparison of model results and measurement for selected device with 

                                               AE0 = 0.8x15 µm² 

=> good agreement over frequency and bias

VBC = 0 V, JC = (0.1, 0.75, 1.5) mA/µm² VBC = 0 V, f = (10, 40) GHz

maximum available gain
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Model results

Scaling and power
Comparison of model results and measurement

=> good agreement over geometry and for large-signal operation

AE0 = 0.8x15 µm²
output power and IMD

VCE = 1 V, JC = 1 mA/µm²

lE0 = 15 µm
Mag vs. emitter width

VBC = 0 V, f = (10, 40) GHz

f0 = 25 GHz
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Conclusions

Conclusions
• A physics-based geometry scalable parameter determination methodology has been

applied to InGaAs/InP HBTs 
• includes a complete set of test structures
• allows process debugging

• (emitter) width and length scalable HICUM/L2 parameter sets have been extracted
• enables circuit optimization
• enables statistical modeling and circuit design

• good agreement between model and measurements over wide geometry, bias and
temperature range (f up to 50GHz, limited by pad design)

• issues to be resolved
• observed geometry scaling and bias dependence for IBC does not follow expectation
• shape of some y parameters vs. bias to be investigated 

• future work
• improved set of test structures (e.g. more length dependent devices)
• pulsed AC measurements to obtain sufficient bias range
• measure up to higher frequencies (110GHz)
• improved procedures for extracting bias dependent model parameters


