TRADICA Overview: Status and Development

M. Schröter

Chair for Electron Devices and Integrated Circuits

(CEDIC)

University of Technology Dresden

Germany

Dept. of Electrical and Computer Engin.

Wireless Communications Center

University of California at San Diego

USA

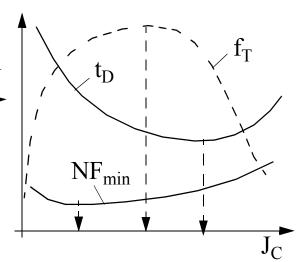
mschroter@ieee.org

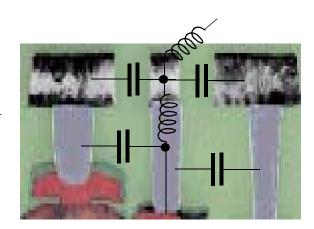
http://www.iee.et.tu-dresden.de/iee/eb/eb_homee.html

HICUM Workshop 2004 Outline

Outline

- Tool overview
- Version 5.2 features
- Design system integration

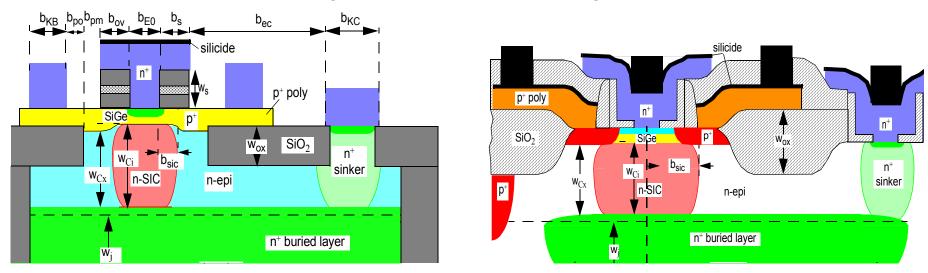

HICUM Workshop 2004


Tool overview

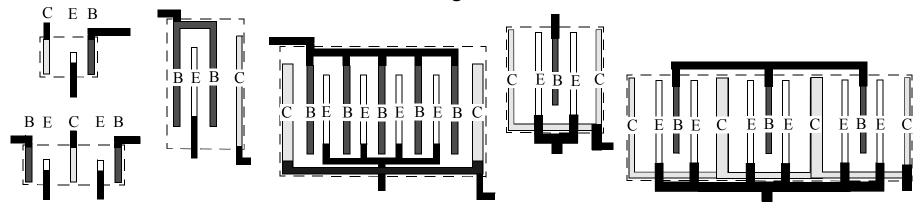
Tool overview

Motivation: the importance of geometry scaling for circuit design and optimization

- LNA design:
 - need to be able to size emitter area for achieving low noise and high gain *simultaneously*
- frequency divider, MUX, DEMUX ...:
 - proper transistor sizing for diff pairs, emitter followers, etc to achieve maximum speed with low jitter, etc. *simultaneously*
- biasing circuits
- statistical design and matching
 - process variations (lateral and vertical) are unavoidable
 map size variations to electrical characteristics
- parasitic effects
 - spacers, metalization ...
 - substrate coupling effect
 - thermal effects and coupling

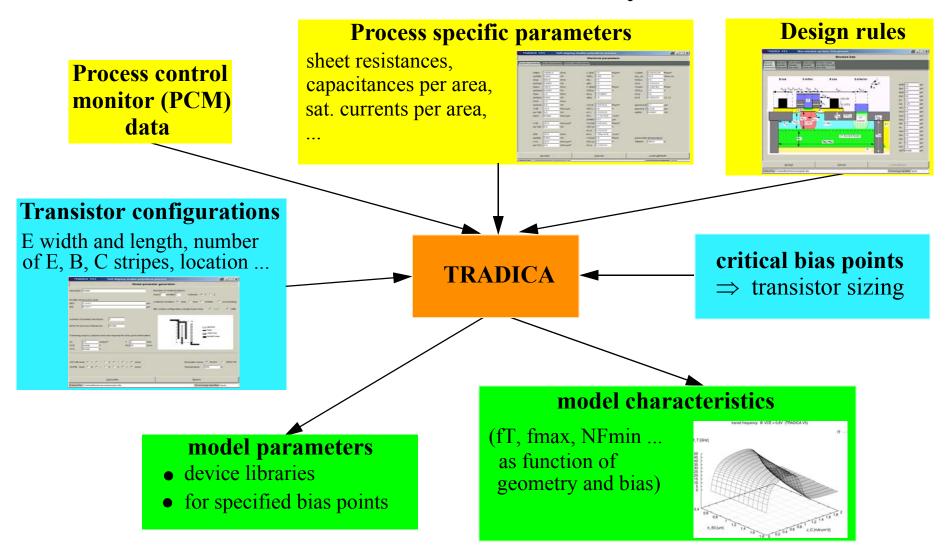


 \Rightarrow fast parameter generation and sizing criteria


HICUM Workshop 2004 Geometry scaling

Geometry scaling

dealing with different device designs ...


... and configurations

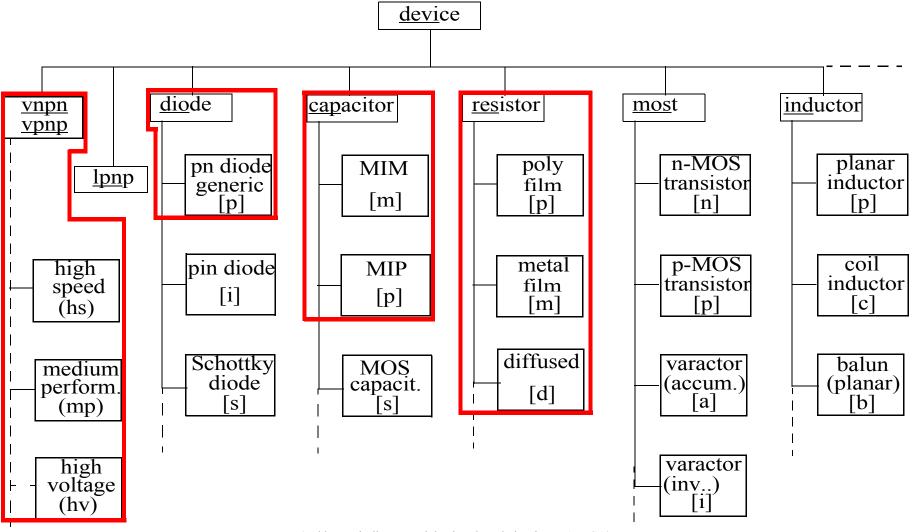
. . . makes implementing *versatile* geometry scaling equations in circuit simulators *unfeasible*

HICUM Workshop 2004 Geometry scaling

What does TRADICA exactly do?

HICUM Workshop 2004 TRADICA version 5.2

TRADICA version 5.2


new feature overview

- device portfolio
- statistical modeling (incl. correlated PCMs) \rightarrow see separate presentation
 - internal procedure
 - external simulators
- automated parameter extraction
 - HICUM/Level0
 - SGPM (all Levels)
 - VBIC (planned)
 - from device simulation (DEVICE)
- distributed modeling \rightarrow see separate presentation
 - electrical
 - electro-thermal
- non-standard geometry scaling

HICUM Workshop 2004 TRADICA version 5.2

Device portfolio

... typical for h.f. circuit design and process technologies employed

(red boxes indicate models already existing in TRADICA)

HICUM Workshop 2004 TRADICA version 5.2

"Non-scalable" process

Measured geometry scaling laws do not follow standard relations

\Rightarrow consequences:

- limited number of devices => limited circuit optimization and suboptimal performance
- no statistical modeling and simulation => risk of additional design cycle(s)
- inconsistent and inaccurate models => increased effort for model maintenance and support
- passing on process issues to modeling => time delay for library delivery
 - ⇒ cost increase (multiplied on the design side)

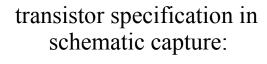
Problems can partially be overcome by spending more effort at the expense of

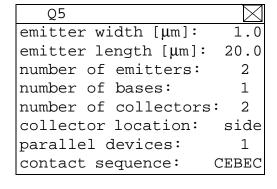
- time delays for model parameter delivery
- cost for modeling and for lost window of opportunity for foundry and design house

Note:

Designers will almost always select scalable process (assuming similar performance, device portfolio)

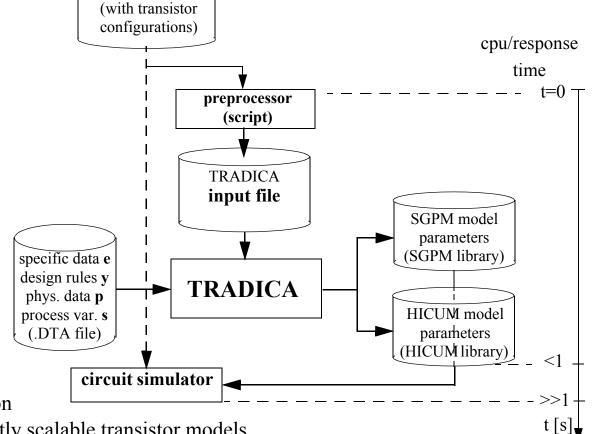
Possible causes for non-scalable process


- incorrect information on actual dimensions
- emitter window etch (often difficult etch stop) => variation of x_{jE} and r_{SBi}
- transient enhanced diffusion (TED) => increasing w_B toward perimeter (mostly suppressed today using SiC)
- broken silicide and bi-modal base resistance distribution => unpredictable with any model (this is a yield issue which cannot be captured by statistical modeling !!)
- SIC implant too deep => spacer region pinch-off and increase of emitter perimeter current
- contact resistance: vias vs slot contact => integer vs. continuous scaling


measures for dealing with non-scalable process

- fix process recipe in the first place (avoids transfer of problems to modeling and design)
- detect physical causes (need proper test structures) => develop new scaling equations
- non-physical post-processing (lack of time, no suitable test structures) => consequences...
 - ⇒ first step to increase TRADICA's flexibility: postprocessing of specific parameters

Integration of TRADICA into a design system


circuit netlist

Benefits:

- statistical and matching simulation
- circuit optimization via consistently scalable transistor models
- parameter transfer via single "technology" file (xxxx.DTA)

⇒ significant enhancement of functionality for design at reduced maintenance effort for foundry

HICUM Workshop 2004 Summary

Summary

- TRADICA is a tool for
 - consistent model parameter generation (across sizes for the same model and across models!!)
 - device sizing
 - automated parameter extraction from device simulation
 - educational purposes
- Statistical and matching simulation is performed in a consistent way
 - internal model evaluation => used for corner library generation
 - control of external simulators => used for simulating circuit yield or process variation sensitivity
 - integration design system => seamless link between foundries, modeling and design houses
- Extension towards models for complete device portfolio of h.f. process technologies
 - correlated statistical simulation
 - supports organized modeling effort