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Multi-dimensional GICCR Introduction
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Introduction

Bipolar transistor applications 

• high-frequency/high-speed operation 
• Bluetooth, 802.11, WLAN (e.g. 60GHz), UWB (impulse) radio, Fre
• OC 192/768...
• linear circuits, ...

Constraints 

• some applications are close to the technology limit  ⇒  care

• cost reduction (mask, re-spins..., yield prediction) 

⇒  need for accurate compact models for SiG

• presently: covered by advanced models such as HICUM, M

• future: increasing importance of accurate models (e.g., geom

⇒  goal: physics-based model concept for future 
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Multi-dimensional GICCR Introduction

ece expression) 
ult to include

bias region

ulation 
 © MS

Transfer current theory 

• classic approach: differential equation in base region
• 1D
• different formulation for each bias and spatial region (no single-pi
• important effects (such as Early- and high-current effect) are diffic

• Integral Charge-Control Relation (ICCR): 
• natural to BJT action, elegant single-piece solution over relevant 
• requires smooth charge model
• limited to transistors without bandgap variation, 1D structure

• Generalized ICCR (GICCR)
• extension of ICCR
• applicable to HBTs, but still 1D

 ⇒  This work:  multi-dimensional GICCR form
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Multi-dimensional GICCR Investigated device structure and process technology

ss technology
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Investigated device structure and proce
     vertical doping profile (1D) under emitter               schematic cr

• profile corresp. to high-speed transistor version with peak fT

• example here: "conventional" profile (other profiles have bee

• 2D device simulation: unit emitter length lE = 1µm  (no new i
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Multi-dimensional GICCR Theory and derivation
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Theory and derivation

• assumptions:
• negligible volume recombination
• zero time derivative (for practical applications: quasi-static operat
• tunneling and thermionic emission across the junctions are negle

• starting point:  x-component of electron current density,  

• yields (same as 1D derivation):  

• with constant  and weighting function
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Multi-dimensional GICCR Theory and derivation
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Theory (cont’d)
• 2D integration of r.h.s.:
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Multi-dimensional GICCR Theory and derivation
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Theory (cont’d)

• 2D integration of l.h.s.:   

• : impact in y-direction negligible   ⇒  tr
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Multi-dimensional GICCR Theory and derivation
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Theory (cont’d)
• relation of weighting functions to hole density distribution

lateral spatial dependence of hJ, he, hg, and p alo
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• hg

• constant vs y  ⇒  hg ≈ hg(x,0)

• hJ 
• constant vs y under most of window

(can be affected by emitter current
crowding)

• drops rapidly to zero in spacer
region due to current spreading 

• he 
• slightly dependent on y due to volt-

age drop across base resistance
components 

⇒  hJ determines the lateral distribution

⇒  hole charge contribution only from region with (ver
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Multi-dimensional GICCR Theory and derivation
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Theory (cont’d)

evaluation of hole density related integr

• split p into zero-bias and bias dependent component:  p = p

• zero-bias weighted hole charge

• slightly bias dependent due to
"shape" change of h components 

• bias dependent weigthed hole
charge

Qp0h q2lE0 hp0 xd yd
0

xC’

∫
0

bbc

∫=

∆Qph q2lE0 h ∆p xd yd
0

xC’

∫
0

bbc

∫=
0 1

0

0.05

0.1

0.15

Qp0h

[fC/µm] peak fT



11

Multi-dimensional GICCR Theory and derivation
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Master equation
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• evaluation with numerical
values for  charges and h 

• excellent agreement over
whole bias region 

• slight deviation (0.5%)
from device simulation due
to numerical integration 

⇒  suitable for compact model developme
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Multi-dimensional GICCR Model equations
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Model equations
• need to represent ∆Qph by measurable expression, such as

• partition ∆Qp into space-charge and minority components: 

• split weighting function into "mostly" 
• vertical component  hg = hg(x,0)   ⇒   treat like 1D case 

• lateral component   h2 = hJhe = h2(xbm,y) 
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Multi-dimensional GICCR Model equations
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Appendix: Theory (cont’d)
3D distribution of ∆p and h ∆p in the BE junctio

⇒  suppression of part of the perimeter BE depletion 
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Multi-dimensional GICCR Model equations (cont’d)

at the terminals 
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Model equations (cont’d)
• example:

BC space charge 

with
• QjC as total (internal and external) BC space charge measurable 

• QjC as charge per area  (equals under emitter window the interna

• hjC = hgjCh2 with bias independent h2 as first-order approximatio

• at low injection:
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Multi-dimensional GICCR Model equations (cont’d)

y of accounting for rB 
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Model equations (cont’d)
comparison  between ∆bE0/2 and γC 

• very close at low current densities

• deviations at higher current densities caused by different wa
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Multi-dimensional GICCR Model equations (cont’d)
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Model equations (cont’d)
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Multi-dimensional GICCR Model equations (cont’d)
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Model equations: comparison to re

• model equation: IT qbElE0c0
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• numerical values for charges

• (bias) averaged weighting factors

• good agreement in relevant bias
region
• SiGe HBTs: deviation caused mostly

by change of hJ*he "form factor"

• improvements:
• make hx bias dependent
• normalize to hmB to reduce parame-

ter number and simplify modeling of
weighting factors

⇒  existing compact models all use h



Conclusions
• The derivation of a multi-dimensional (generalized) Inte-

gral Charge-Control Relation for the transfer current of
BJTs/HBTs has been presented 

• The resulting "master equation" has been verified by
device simulation

• The "master equation" can serve for deriving simplified for-
mulations for compact models 
 

• keep control over errors 
• well-defined evaluation of the impact of assumptions
• clear meaning of variables and parameters (particularly as func-

tion of lateral dimensions)

• A first-order approximation of the master equation has
been derived  
• equivalent to formulation used in existing model 
• demonstration of achievable accuracy 
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