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Multi-dimensional GICCR Introduction

Introduction

Bipolar transistor applications

* high-frequency/high-speed operation
 Bluetooth, 802.11, WLAN (e.g. 60GHz), UWB (impulse) radio, Free Space Optics
« OC 192/768...
* linear circuits, ...

Constraints
» some applications are close to the technology limit = careful circuit optimization

» cost reduction (mask, re-spins..., yield prediction)

= need for accurate compact models for SiGe HBTs

 presently: covered by advanced models such as HICUM, MEXTRAM, VBIC

« future: increasing importance of accurate models (e.g., geometry scaling ...)

— goal: physics-based model concept for future technologies
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Multi-dimensional GICCR Introduction

Transfer current theory

» classic approach: differential equation in base region
- 1D
« different formulation for each bias and spatial region (no single-piece expression)
» important effects (such as Early- and high-current effect) are difficult to include

* Integral Charge-Control Relation (ICCR):

« natural to BJT action, elegant single-piece solution over relevant bias region
* requires smooth charge model
* limited to transistors without bandgap variation, 1D structure

» Generalized ICCR (GICCR)

» extension of ICCR
 applicable to HBTs, but still 1D

— This work: multi-dimensional GICCR formulation
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Multi-dimensional GICCR

Investigated device structure and process technology

Investigated device structure and process technology

vertical doping profile (1D) under emitter
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schematic cross-section of SiGe HBT
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« profile corresp. to high-speed transistor version with peak f; = 100GHz @ Vg = 0V

» example here: "conventional" profile (other profiles have been investigated, too)

2D device simulation: unit emitter length Iz = 1um (no new information by 3D simul.)
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Multi-dimensional GICCR Theory and derivation

Theory and derivation

assumptions:

* negligible volume recombination

 zero time derivative (for practical applications: quasi-static operation)
 tunneling and thermionic emission across the junctions are neglected

starting point: x-component of electron current density, J . = —qunnd—;

dlexp(—9,/V;)] exp ( Vg E)

yields (same as 1D derivation): 1, h(x,y)p(x,y) = —¢, T

with constant ¢, = ¢V, AEo“no”‘?o and weighting function

2
h(x,y) = a0 ) o exp(VB'E'_q)p(x’y)j
B2 Vr
~ N -
hJ(X,Y) hg(X9Y) he(X,Y)
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Multi-dimensional GICCR Theory and derivation

Theory (cont’d)

2D integration of r.h.s.:
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Multi-dimensional GICCR

Theory and derivation

Theory (cont’d)

by, Xc
» 2D integration of |.h.s.: ]Tj j hg(x,y) h(x,y) h,(x,y) p(x,y) dxdy
0 "0

. hg - (pnonfo)/(pnnf . impact in y-direction negligible = treatas in 1D case
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Multi-dimensional GICCR

Theory and derivation

Theory (cont’d)

* relation of weighting functions to hole density distribution

lateral spatial dependence of h, hg, hy, and p along x = Xxppy,

'hg

e constantvsy = hg = hg(x,O)

* h,

» constant vs y under most of window

(can be affected by emitter current
crowding)

e drops rapidly to zero in spacer
region due to current spreading

'he

« slightly dependent on y due to volt-
age drop across base resistance
components
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= hj determines the lateral distribution of h

= hole charge contribution only from region with (vertical) current flow
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Multi-dimensional GICCR Theory and derivation

Theory (cont’d)
evaluation of hole density related integrals

* split p into zero-bias and bias dependent component: p = pgy + Ap

* zero-bias weighted hole charge 0.15
bbc Xc
O on = 9215 hpodxdy
i J‘O IO QpOh o1
* slightly bias dependent due to  [fC/um] peak fr

"shape" change of h components

» bias dependent weigthed hole
charge

bp. Xc
AQph = q2IEOIO jo h DAp dxdy
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Multi-dimensional GICCR Theory and derivation

Master equation

(VB'E') (VB'C")bec
exp| — | — exp

I~ = qgb.l.,C T Vb
T — 4°PE'E0C
QpOh * AQph
. . . ]_01 T T T T T T T 2
e evaluation with numerical
values for charges and h . 1.5
10" ¢
11
« excellent agreement over e 107 | Crel
: : 0.5
whole bias region mAm] | (%]
10_2 RiE iR e e e ., 4-\-<-‘ ¥ ‘0
‘,/-"'~
 slight deviation (0.5%) 105
. . . -3 ‘- .
from device simulation due 10
to numerical integration . -
10
-1.5
107 ' ' ' -2
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Vee [V]

= suitable for compact model development
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Multi-dimensional GICCR

Model equations

Model equations

* need to represent AQ,, by measurable expression, such as AQ,, components

* partition AQ,, into space-charge and minority components: AQ,

* split weighting function into "mostly"

« vertical component hg = hg(x,O) —> treat like 1D case

» lateral component hs = hjhg = ha(Xpm,Y)
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Multi-dimensional GICCR Model equations

Appendix: Theory (cont’d)
3D distribution of Ap and h Ap in the BE junction region

lc = 0.37mA/pm
x 10" ‘ Vge = OVX 10°

2 | | 10
8
h Ap6

[cm™]
2

= suppression of part of the perimeter BE depletion charge by h (hy)
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Multi-dimensional GICCR Model equations (cont’d)

Model equations (cont’d)

» example: i b
bc _ be — —

BC space charge Oicp = ZIEOJ‘ hz(q j thpdx]dy DZIEOhg]-Cj hyQicdy = hjcQ;c
0 Whe 0

with

. QjC as total (internal and external) BC space charge measurable at the terminals
. QJC as charge per area (equals under emitter window the internal charge density QJC,)
hjC h jCh2 with bias independent h2 as first-order approximation

« at low injection:

A yC Aon/z
[1 h y j hZQjCl >
. - + ' - A
Oren = Qe = hgicQyc bE0? b2 g a---- '
j
_ Abg,
= h,icO, .(1 + —)
gL=jCi bro
* similarly:
_ Ab g - Abg 0
Qpon = thQpOi(l * bEO) » Ojgn = hgiEQjEi(l " on)
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Multi-dimensional GICCR Model equations (cont’d)

Model equations (cont’d)

comparison between Abgy/2 and y¢
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* very close at low current densities

* deviations at higher current densities caused by different way of accounting for rg
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Multi-dimensional GICCR

Model equations (cont’d)

Model equations (cont’d)

minority charge
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* base region: Q. = Q5

* internal electron charge density:
Qngi = Qna(y=0) = Qngi = QnaiPeoleo

* normalized electron charge density
Qup(Y)/Qupi U ha(y)

= hy (Qup(Y)Quei) 0 hoA(y)
bbc _ _ b

= _[ thnB dy ~ QnBi%)

0

« first-order approximation:
th ~ }_lmEQpE + }_lmBQnB + }_ZmCQpC

with Hm as spatial and bias averages
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Multi-dimensional GICCR Model equations (cont’d)

Model equations: comparison to reference

exp(VB'E') - exp(VB'C")zbbc
Vi Vr bE

"00n+ 1iEQiE+ hicQict O

model equation: I, = gbgly,c

1

« numerical values for charges 10 25
* (bias) averaged weighting factors 10 iz
* good agreement in relevant bias e 110
region [MA/um] is Crel
» SiGe HBTs: deviation caused mostly 107 1o [%]
by change of hj*hg "form factor" |
* improvements: 0 1-10
* make h, bias dependent 10 | | 1-15
* normalize to ﬁmB to reduce parame- | | 1-20
ter number and simplify modeling of 10(';65 0T o o8 om0 o 12

weighting factors Ve [V]

= existing compact models all use hy
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Conclusions

* The derivation of a multi-dimensional (generalized) Inte-
gral Charge-Control Relation for the transfer current of
BJTs/HBTs has been presented

* The resulting "master equation" has been verified by
device simulation

» The "master equation” can serve for deriving simplified for-
mulations for compact models
» keep control over errors
» well-defined evaluation of the impact of assumptions

 clear meaning of variables and parameters (particularly as func-
tion of lateral dimensions)

» A first-order approximation of the master equation has
been derived

 equivalent to formulation used in existing model
» demonstration of achievable accuracy
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