

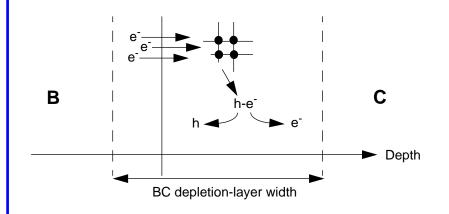
Scalability of the avalanche phenomenon in bipolar transistors

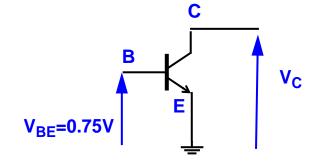
5th European HICUM Worskshop, June 6/7, 2005

Franck Pourchon

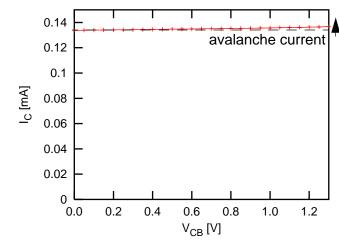
- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

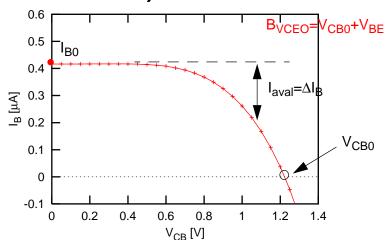
- Introduction on the soft avalanche breakdown characterization and motivation of this work.
- Study of the geometrical dependence of the avalanche current.
- Modeling proposal and parameters extraction.
- Validation for HICUM 2.2 using VerilogA capabilities.




Introduction

- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

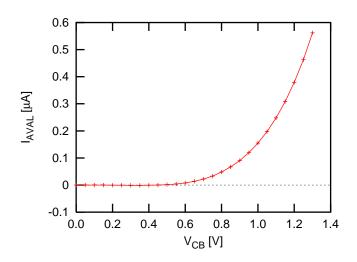

Soft breakdown characterization

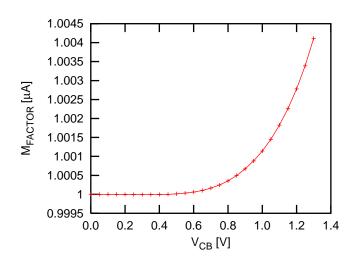

impact ionization phenomenon (NPN transistor):

impact ionization phenomenon (NPN transistor):

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

Avalanche current and multiplication factor M:


• The avalanche current is defined as:


$$I_{aval} = I_{B0} - I_{B}(V_{CB})$$

The multiplication factor M is defined as:

$$I_C = M \cdot I_{C0} = I_{C0} + I_{aval}$$

thus
$$M = 1 + \frac{I_{aval}}{I_{C0}} = 1 + \frac{I_{aval}}{I_{C} - I_{aval}}$$

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

What about avalanche in HICUM?

Presented at the BCTM 1998 [1]:

o planar breakdown occurring in the BC junction of the internal transistor below the emitter, the collector-base weak avalanche current is expressed as:

$$I_{AVL} = I_{TF} \cdot \alpha_n(x) = I_{TF} \cdot \int_0^{W_{BC}} a_n \cdot exp \left\{ -\frac{b_n}{|E(x)|} \right\} dx$$

 W_{BC} , the width of the BC depleted region could be expressed with the internal BC depletion capacitance C_{JCi} leading to (with F_{AVL} and Q_{AVL} model parameters):

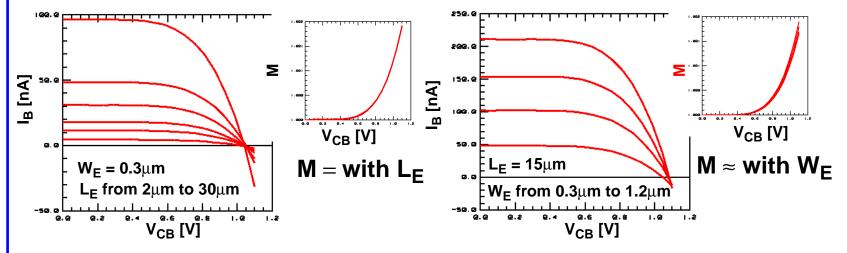
$$I_{AVL} = I_{TF} \cdot \mathbf{F_{AVL}} \cdot (V_{DCi} - V_{B'C'}) \cdot exp \left\{ \frac{-\mathbf{Q}_{AVL}}{C_{JCi} \cdot (V_{DCi} - V_{B'C'})} \right\}$$

Geometry dependence of M factor:

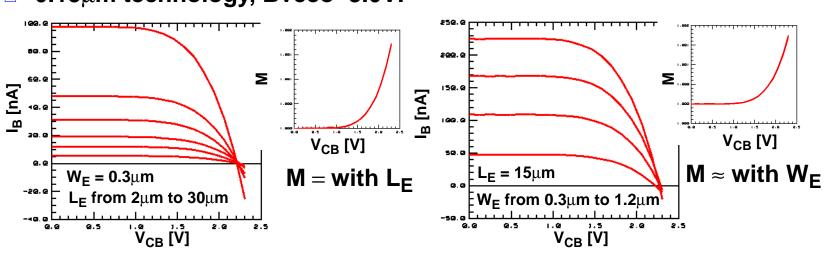
$$M = 1 + \frac{I_{AVL}}{I_{C0}} = 1 + F_{AVL} \cdot (V_{DCi} - V_{B'C'}) \cdot exp \left\{ \frac{-Q_{AVL}}{C_{JCi} \cdot (V_{DCi} - V_{B'C'})} \right\}$$

 \bigcirc Q_{AVL} and C_{JCi} are both proportional to A_E, the effective area (I_{TF} as well):

M is geometrically independent! (and for a scalable model I_{AVL} is proportional to A_E)

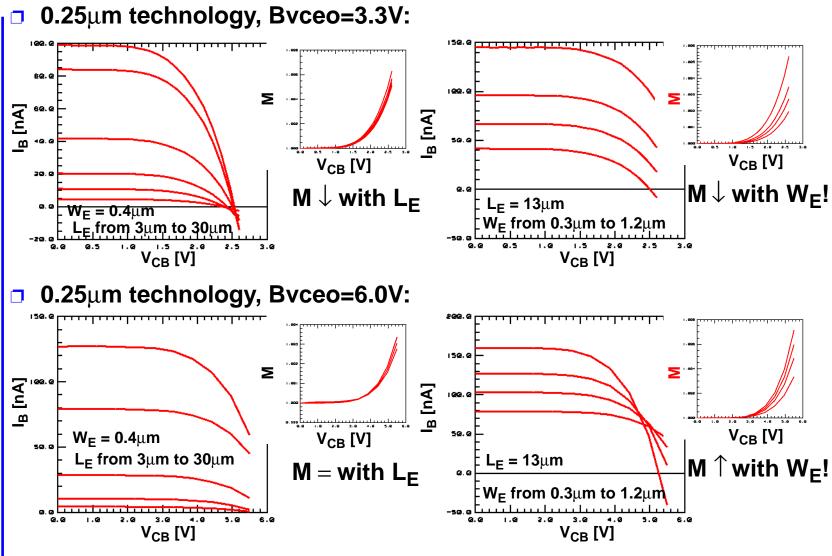

Introduction

Outline


- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

Measurements from ST tech.

0.13μm technology, Bvceo=1.8V:



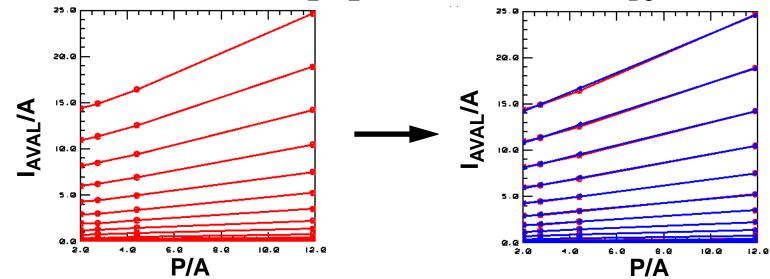
□ 0.13μm technology, Bvceo=3.0V:

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

Unfortunately, the M factor does not overlay for every bipolar transistors of every technologies, clear trends could be noticed!

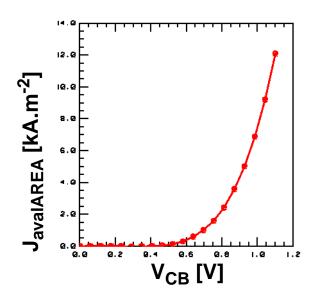
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

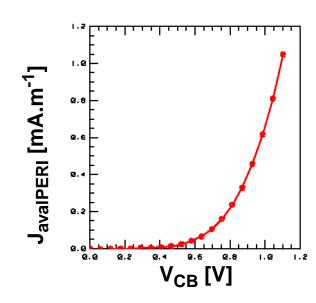
Geometrical dependence of laval

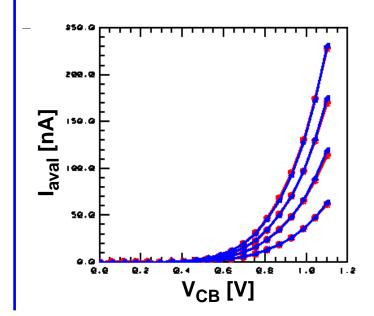

To study the geometrical dependence of the avalanche current, area and peripheral components could be extracted, assuming:

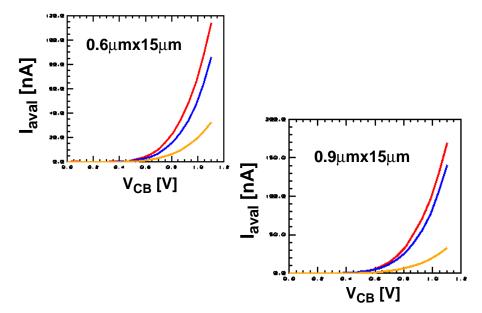
$$I_{\text{aval}} = I_{\text{avalPERI}} \cdot P + I_{\text{avalAREA}} \cdot A \tag{1}$$

leads to:
$$\frac{I_{aval}}{A} = I_{avalPERI} \frac{P}{A} + I_{avalAREA}$$
 (2)

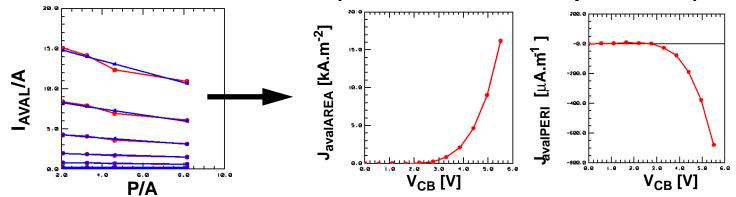

allows an 'Y=a.X+b' type of direct extraction with Y = $\frac{I_{aval}}{A}$ and X = $\frac{P}{A}$!

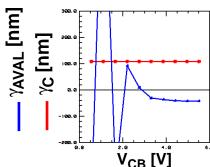

0.13μm technology with Bvceo=1.8V, extraction performed with 4 devices with different W_E (L_E =15μm) for the whole V_{BC} range:




- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

Validation on the avalanche current data:

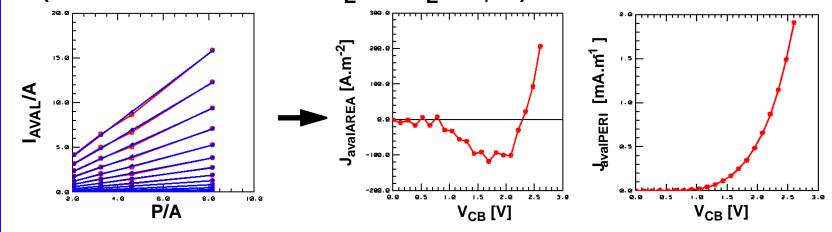


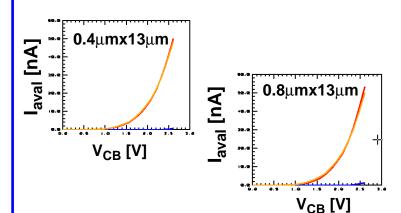

- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

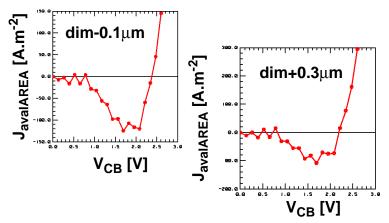
Influence of the dimensions

Extraction for a 0.25μm technology, f_T=30GHz and Bvceo=6.0V using the real emitter dimensions (drawn dimensions-spacer with):

- Peripheral component could be negative, not physical! The area considered is too large!
- O Which dimensions have to be used?... \Rightarrow extraction of γ_{AVAL} which defines a surface collecting all the avalanche current (identically to γ_C for I_C):


- \Rightarrow γ_{AVAL} <0, area is too large! If real dimensions are reduced by $2x\gamma_{AVAL}$ peripheral component ≈ 0
- \Rightarrow $\gamma_{AVAL} \neq \gamma_C$, I_{aval} has not the same lateral distribution than $I_C!$
- \Rightarrow γ_{AVAL} varies with V_{BC}


Particular case

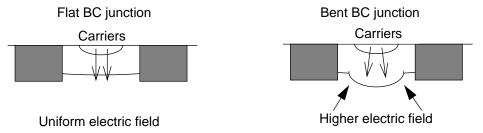

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

Extraction for a 0.25μm technology, Bvceo=3.3V with real dimensions (4 devices with different W_E and L_E =13μm):

Area component is negligible! Avalanche current is mostly peripheral whatever the chosen dimensions!

Intermediate conclusions

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion


- In most of the case laval is both area and peripheral:
 - O Difficult to determine their respective contribution!... both currents are dependent of the dimensions considered (the peripheral component compensates the overestimation of the area!): emitter cut (local collector implant=SIC), real emitter dimensions, other dimensions...difficult to have physical results!
 - \circ γ_{AVAL} helps to define the minimum area in order to get a positive peripheral avalanche current.
 - $\gamma_{AVAL} \neq \gamma_{C}$ indicates that I_{aval} has not the same lateral distribution than $I_{C}! \Rightarrow I_{aval}$ could not be proportional to the effective area!
- if M varies with transistor geometry two current sources are required to modelled accurately the avalanche current!
- □ If I_{aval} is mostly peripheral:

A current source proportional to the perimeter is required!

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

- What could physically explained this differences between technologies?
 - The generation of avalanche current is the result of both the electric field in the BC depleted region and the collector current distribution over this junction.
 - The electric field distribution is sensitive to the bending of the junction (SIC or not...):

- The lateral extension of the collector current flow through the BC junction depends on the 2D junction profile (could be different from the lateral extension in the BE junction)
- ⇒ The distribution of the generated avalanche current in the BC depleted region depends strongly on the device architecture!

- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

Modeling and extraction

- Both area and peripheral avalanche current have been extracted, the M factor needs to be defined, $M = 1 + \frac{I_{AVL}}{I_{CO}}$, so I_{CO} be has to defined!
- The I_{C0} value should be coherent with the avalanche current extraction so:
 - \circ assuming $I_{c0} = I_C(V_{CB} = 0) = I_{C0P} \cdot P + I_{C0A}$ A (Early effect neglected) leads to:

$$I_{COP} = slope$$
 $I_{COA} = cut$

- The approach is validated, I_{COA} and I_{COP} are extracted!
- → M_A and M_P could be defined:

$$M_A = 1 + \frac{I_{avaIAREA}}{I_{C0A}}$$
 and $M_P = 1 + \frac{I_{avaIPERI}}{I_{C0P}}$

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

M needs to be modelled with a simple equation, Miller has defined M with an empirical law as [2]:

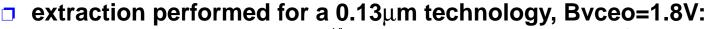
$$M = \frac{1}{1 - \left(\frac{V_{CB}}{BVC}\right)^{MF}}$$
 (3)

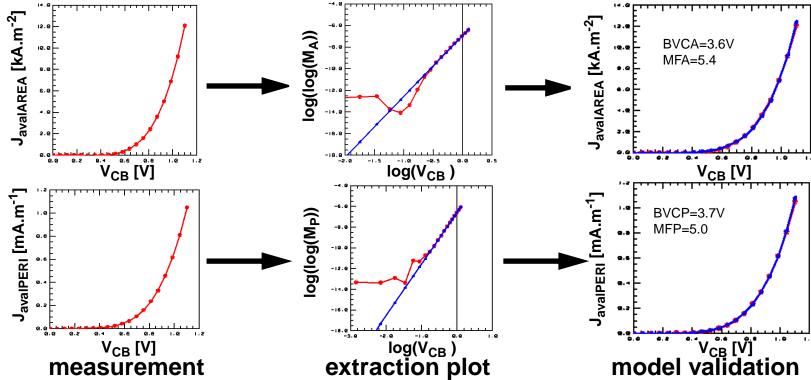
where MF is the exponent multiplication factor and BVC is assumed to be the BC planar junction breakdown.

□ Convergence problem for V_{CB}=BVC! Thus as M is very close to 1, using the Taylor's series, M could be approximated by:

$$M = \exp\left(\left(\frac{V_{CB}}{BVC}\right)^{MF}\right) \tag{4}$$

MF and BVC direct extraction (similar method extended to HICUM avalanche model explained in [3]):


$$log(log(M))M = MF \cdot log(V_{CB}) - MF \cdot log(BVC)$$


□ Linear fit on log(log(M))=f(log(V_{CB})) characteristic yields:

$$MF = slope$$
 $BVC = exp(-cut/slope)$

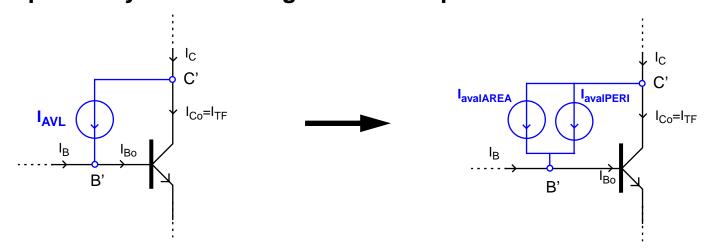
- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

The total avalanche current could be calculated as:

$$I_{aval} = I_{avalPERI} \cdot P + I_{avalAREA} \cdot A$$

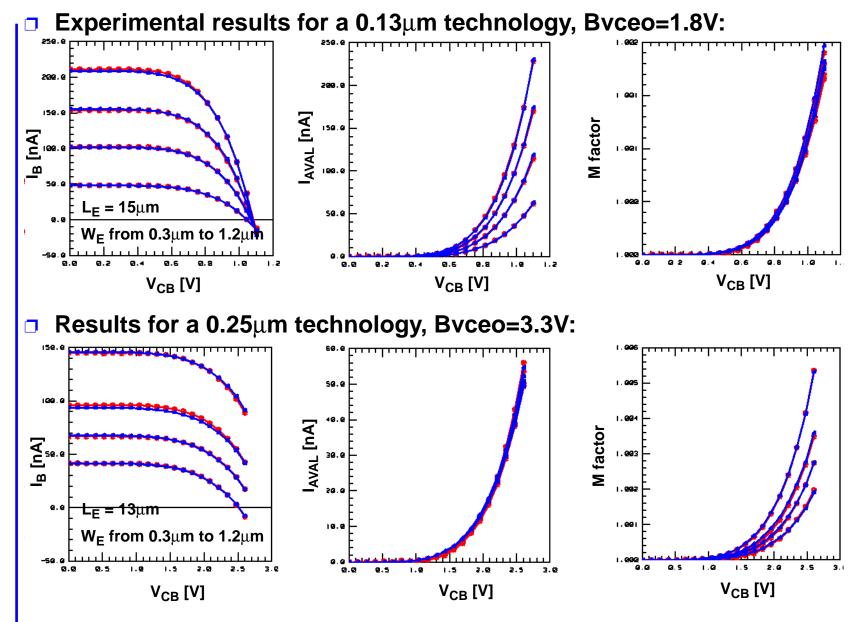
with
$$I_{avalAREA} \cdot A = I_{C0A} \cdot A \cdot (M_A - 1) = I_A \cdot \left(exp\left(\left(\frac{V_{CB}}{BVCA}\right)^{MFA}\right) - 1\right)$$
 (5)

$$I_{avaIPERI} \cdot P = I_{COP} \cdot P \cdot (M_P - 1) = I_P \cdot \left(exp\left(\left(\frac{V_{CB}}{BVCP}\right)^{MFP}\right) - 1\right)$$
 (6)



15/20

Model validation


- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

- Availability of a new verilogA code for HICUM 2.2!
- In verilogA code, the HICUM avalanche current generator has been replaced by two current generators in parallel:

- The previous new parameters QAVL and FAVL are replaced by 6 new ones I_A, BVCA, MFA and I_P, BVCP, MFP.
- Within the ICCAP environment, simulation can be performed with the verilogA code with ADS simulator!

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

This approach allows to model with accuracy all type of weak avalanche breakdown!

Conclusion

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

- Proposal and validation of a area/peripheral model of avalanche current for scalable model improvement (for technologies with a geometry dependent M factor).
- □ Possible improvement in term of more physical formulation of the avalanche currents?...split of I_{TF} for avalanche current generation?
- Possibility to split the two current generators along R_{BX}?
- How to introduce this effect in current HICUM model for scalable libraries?
- Do others users face the same issues in soft breakdown modeling?

Thanks and Reference

- Outline
- Introduction
- Geometrical dependence of the avalanche current
- Modeling and extraction
- Model validation
- Conclusion

Thanks to:

- Christian Raya for his help in programming ICCAP.
- Anjan Chakravorty for his HICUM 2.2 verilogA code.
- Franz Sischka for his ICCAP .mdl file to simulate with verilogA code.
- Didier Céli for his help and explanations about avalanche modeling.

References:

- [1] M. Schröter, Z. Yan, T.Y. Lee and W. Shi, "A Compact Tunneling Current and Collector Breakdown Model", Proceedings BCTM, Minneapolis, 1998.
- [2] S. L. Miller, "Ionization rates for electrons and holes in Silicon", Phys. Rev, vol. 105, pp1246-1249, 1957.
- [3] D. Céli, D. Berger, "Direct extraction of base-collector weak avalanche HICUM model parameters", HICUM users' meeting, Minneapolis, 1998.