HICUM - Workshop 2007 New TRADICA Features

Kai E. Moebus¹, Michael Schroter^{1,2}, Yves Zimmermann¹, Martin Claus¹

¹Chair for Electron Devices and Integrated
Circuits (CEDIC)
Technische Universität Dresden
Germany

²Dept. of Electrical and Computer Engin.
University of California at San Diego
USA

moebus@iee.et.tu-dresden.de

mschroter@ieee.org

http://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_start.html

Dresden

June, 2007

New TRADICA Features Introduction

Introduction

- highly competitive semiconductor industry
 - need to reduce time-to-market and increase yield
- cycle time reduction can be achieved by
 - device optimization during process development guided by circuit design feedback
 - circuit optimization based on accurate (physics-based) modeling, incl. device design freedom

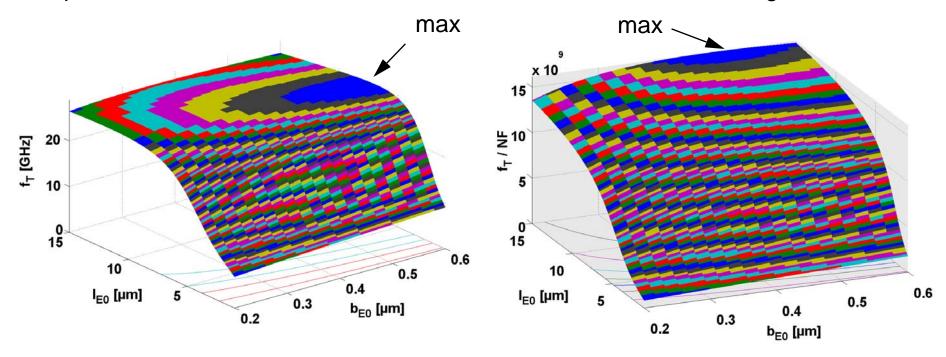
=> concurrent engineering: simultaneous process development and circuit design

- link compact device modeling to circuit design and process optimization
 - · use predictive modeling capability
 - add generic device sizing method based on lateral and vertical technology parameters
 - establish figures of merit (FoMs) related to device and circuit performance

=> optimizer

New TRADICA Features Optimization Methods

Optimization Methods


- available optimization algorithms:
 - Nelder-Mead simplex method (can converge at local extremum)
 - combined with simulated annealing (search for global extremum)
- FoMs are directly calculated by TRADICA to ensure low simulation time
 - newly integrated HICUM/L2 small signal solution used (with/without R_G)
 - additional device FoMs: f_T, f_{3dB}, Y parameters (calculated numerically), small signal equivalent circuit parameters for hand calculations
 - circuit FoMs: delay time for CML, ECL and EF gates, f_{3dB},gain, GBW of a cascode LNA
- FoMs are used as optimization targets (single or joint FoM or target)
 - joint FoM: properly arranged weighted product of single FoMs
 - target: search for specific FoM value
- 2 optimization types:
 - process optimization (max. 14-dimensional)
 - device optimization (max. 2-dimensional)

New TRADICA Features

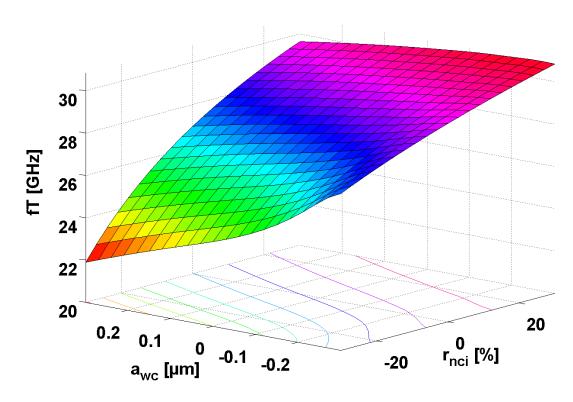
Device Optimization

Device Optimization

optimization of the emitter window dimensions for a certain FoM @ given bias

- maximum f_T: 28.94 GHz @ b_{E0}=0.60μm and I_{E0}=6.84μm
- taking the noise figure NF into consideration, the optimum is clearly shifted maximum f_T and minimum NF @ b_{E0}=0.48µm and I_{E0}=15.00µm
- no limitation in number of FoMs or dimensions for optimization

New TRADICA Features


Process Optimization

Process Optimization

- optimization of the process technology (represented by TPs) for a certain FoM @ given bias and transistor configuration
- significant speed improvement for N-dimensional optimization

Example

- consider a 4 dimensional optimization
- nci δ =0.14 => 29 points
- nbei δ =0.05 => 11 points
- wc δ =0.08 => 17 points
- wb δ =0.08 => 17 points
- resulting grid consists of 92191 points, calculation time 24h
- in TRADICA 4min

New TRADICA Features MOS in TRADICA

MOS in TRADICA

- work on MOS model integration in TRADICA started
- EKV 2.62 and 2.63 integrated
 - numerical derivatives used
 - transcapacitances and transconductances available
 - verified vs. Spectre and golden C-Code
- plans to enable all TRADICA features for MOS models
- for further information please see
 - => poster session
 - => demo session