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One-dimensional Generalized Integral Charge-Control Relation
An accurate yet compact relation describing the transfer current is crucial for developing a compact

model. The Integral Charge-Control Relation (ICCR) was the keystone of the SGPM. ICCR was too

simple and failed to address new effect found in HBTs. The GICCR was developed to address ICCR’s

shortfalls as an approach  for analysing device’s d.c. behavior and as a compact relation for modeling

the transfer current.

The Master GICCR relation is

 with the weighted hole charge  and

corresponding weighting factor .

The “regional-approach” compact relation

The results:

The one-dimensional GICCR relation is a powerful theory to describe and model the transfer cur-

rent. It is applicable for both SiGe- and “compound” HBTs. In its aggressively simplified form, the

compact relation derived from GICCR yields good agreements with numerical device simulations.
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schematic cross-section of CED SiGe-HBT  vertical doping profile (1D) under emitter
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Multi-dimensional Generalized Integral Charge-Control Relation
Two-/three- dimensional GICCR was developed in complement to 1D-GICCR to address the needs

of dimension-related analysis and modeling such as parameter scaling, device optimization and to

model those such as silicon-on-insulator based HBTs. The theory was derived for 2D profiles but also

applicable for 3D ones. 

The Master GICCR relation for a 2D structure

•  is two dimensional weighted hole

charge

•  is the effec-

tive emitter width and AE = bElE0 is effective emitter

area, AE > AE0.
The “compact relation”

Results

A multidimensional Generalized Integral

Charge Control Relation was presented that

accurately describes the transfer current of 2D

Si- and SiGe transistors. As an exact and

physics-based solution, the relation can be

regarded as Master Equation that allows further

considerations and simplifications, for compact

model formulations to be made. A compact

relation was demonstrated with good results.
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Motivations

• SiGe-HBTs become mainstream and offer competitive r.f. performance

• de-facto SGPM fails to keep up with advanced Si- and SiGe- bipolar transistors

• Exploding costs for manufacturing

Field-based charge and transit time model for SiGe-HBTs
The field model

The base carrier jam model in HICUM  

with fu(u) given in Diss., bhc as new model pa-

rameter, and γ u = 1(holes), 2(electrons) both

transit time formulations depend on the normal-

ized field 

A physics-based electric field model was present-

ed and succesfully applied to model the base

carrier jam component in SiGe-HBTs. It was also

employed to model the current-dependent behav-

ior of the BC depletion capacitance. The

demonstrated results are in good agreements with

numerical device simulations. 
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through project SFB-358.

0 0.2 0.4 0.6 0.8 1
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

VBC=0.2            0.0                -1.5[V]

IC [mA/µm2]

-E
 [V

/c
m

]

• model equation: 

,

• parameter: gjc (all other parameters are

already available in HICUM)

• depletion charge model provided in

HICUM
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Methodology

• Behavioral device study with numerical device simulations based on practical device profiles

• In-depth device analysis of physical effects with charge partitioning schemes

• Identify important characteristics to be modeled

• Physics-based analytical modeling of measureable electrical elements such as charges and transit times.
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Results of compact modeling
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Modeling the carrier jam
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Modeling the current-dependent depletion cap.


