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Statistical S

Imulation

Use of a TRADICA based Statistical Design Kit in the Cadence Environment

The Tradica Principle

Initially a TRAnNsistor Dimensioning and CAlculation
program used for an analog simulator

Since mid nineties it has become an expert system, being expanded to handle all
devices of a technology

for the statistical part FAB process parameters as well as technology
parameters (e.g.: base width, base doping) are used as independent variables
(technology scaling ability)

advanced scaling equations support a large variety of layout sizes

devices using the same process step are automatically coupled

matching information can be included

for bipolar the advanced HICUM and the classic SGPM are supported in
various complexity levels

Statistical simulations

So far corner simulations are widely used

ldentification of 1st order Effects

300 Monte Carlo runs were used to identify the process parameters which have

the largest impact on the DC offset of the output signal

process parameter

TIAV1 Process Variation
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In the example the doping of the inner base is most sensitive
Rerun the simulator and perform Monte Carlo only on the sensitive
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principle into the design flow

Closing the loop

Formerly there was a gap between
the input for the statistic, i.e. the technology parameter variation

the output of a wafer FAB, i.e. the results of electrical measurements on PCM
(process control monitor) structures

To close this gap and to verify the statistical approach it is necessary to
Implement the statistical simulation capabilities into a design kit
collect sufficient PCM data

perform statistical simulations of the PCM test structures with the same testbench
as the measurement to estimate the technology parameter variation

verification of technology parameter variation by comparison of measured and
simulated PCM data

Using the Statistical Design Kit
Example: DC offset of a Transimpedance Amplifier (TIA)

TIA Version |

Monte Carlo Mismatch Analysis

TIAV1 Mismatch Analysis
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Results for the redesigned circuit

TIA Version |l

Several additional blocks have to be added to reduce the offset and spread
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TIA DC-Offset

after optimisation before optimisation
mu = 0.097mV mu = 242.8mV
sd =1.099mV & | sd =25.128mV
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