HICUM Models - A Status Overview

A. Mukherjee, M. Schröter, A. Pawlak

Dept. of Electrical and Computer Engin.
University of California at San Diego
USA

CEDIC
University of Technology Dresden
Germany

mukherje@iee.et.tudresden.de, mschroter@ieee.org http://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_start.html

11th HICUM Workshop, Bordeaux, France June, 2011

OUTLINE

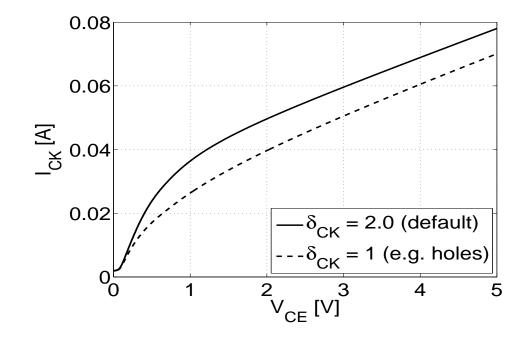
2

- HICUM/L2
 - V2.30 release
 - Model Support
 - Experimental verification
 - Model Run-time comparison
- HICUM/L0 Support Activities

HICUM/L2

- New HICUM/L2 version 2.30 model
 => final code released publicly on 24th May, 2011
- New release note describing all extensions and changes and CMC suggested QA results are available on web

Users are requested to fill out brief questionnaire for code access

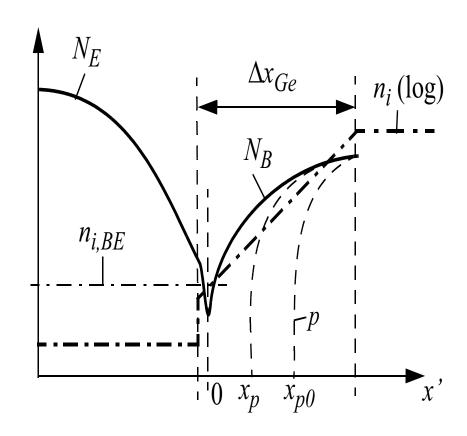

- helps us to keep track of users
- requires users to acknowledge copyrights
- CR notice is also included into the code
- summary of improvements described on next slides
- tests were run in
 - SPECTRE
 - ADS

New features

Modified formulation of critical current (I_{CK})

$$I_{CK} = \frac{v_{ceff}}{r_{Ci0}} \cdot \frac{1}{\left[1 + \left(\frac{v_{ceff}}{V_{lim}}\right)^{\delta_{CK}}\right]^{1/\delta_{CK}}} \left[1 + \frac{x + \sqrt{x^2 + a_{ickpt}}}{2}\right]$$

• Default δ_{ck} = 2 compatible with previous versions (typical for npn)


New features (cont'd.)

transfer current: weight factor for BE depletion charge

compositional Ge grading causes different weighting of charge stored close to BE junction (Q_{jEi}, Q_f) compared to zero-bias charge Q_{p0}

$$h_{jEi} = h_{jEi0} \frac{\exp\left[a_{hjEi}\left(1 - \left(1 - \frac{V_{BEi}}{V_{DEi}}\right)^{z_{Ei}}\right)\right]}{a_{hjEi}\left(1 - \left(1 - \frac{V_{BEi}}{V_{DEi}}\right)^{z_{Ei}}\right)}$$

• Default $a_{hjEi} = 0$ is compatible with previous versions

=> crucial for high-performance technologies

New features (cont'd.)

transfer current: weight factors for the minority charge

Newly added weight factor h_{f0} for low-injection minority charge

$$Q_{f,T} = h_{f0}Q_{f0} + h_{fE}\Delta Q_{fE} + \Delta Q + h_{fC}\Delta Q_{fC}$$

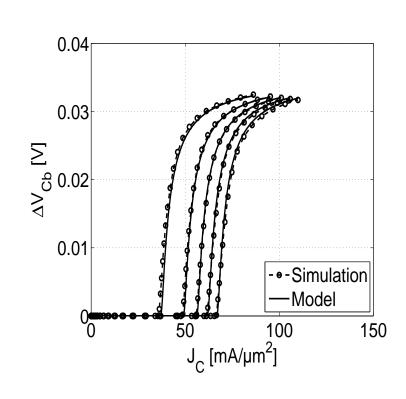
- $default h_{f0} = 1$ compatible with previous version
- caused by significant charge contribution from outside neutral base

=> very important for high-performance technologies

• High current weight factors h_{fE} and h_{fC} are modeled temperature dependent

New features (cont'd.)

minority charge: BC barrier effect explicitely included


bias dependent barrier voltage

$$\Delta V_{cBar} = V_{CBar} \exp\left(-\frac{2}{i_{Bar} + \sqrt{i_{Bar}^2 + a_{cBar}^2}}\right)$$

with
$$i_{Bar} = (i_{Tf} - I_{CK})/i_{cBar}$$

- $V_{cBar} = 0$ turns off extension
- new barrier related minority charge in base region:

$$\Delta Q_{Bf, b} = \tau_{Bfvs} i_{Tf} \left[\exp \left(\frac{\Delta V_{cBar}}{V_T} \right) - 1 \right]$$

=> important for high-performance technologies

New features (cont'd.)

Modification of temperature dependent BE recombination currents

$$I_{RE(i,p)S}(T) = I_{RE(i,p)S0} \left(\frac{T}{T_0}\right)^{\frac{m_g}{m_{RE(i,p)}}} \exp\left[\frac{1}{m_{RE(i,p)}} \frac{V_{gBEeff}}{V_T} \left(\frac{T}{T_0} - 1\right)\right]$$

- setting flcomp=2.2 reduces the equation to that of previous versions
- Additional flicker noise contribution for emitter resistance R_F

$$\overline{I_{rE}^2} = \frac{K_{fre} \cdot I_E^{A_{fre}}}{f} + \frac{4kT}{R_E}$$
 (default $K_{fre} = 0$)

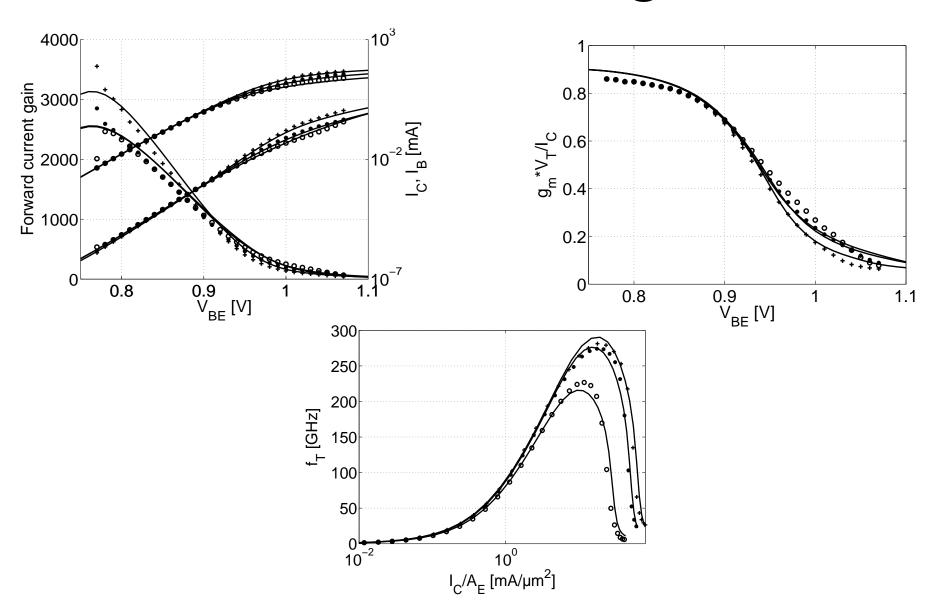
• Thermal resistance is modeled temperature dependent

$$R_{th}(T) = R_{th}(T_0) \left(\frac{T}{T_0}\right)^{\zeta_{rth}}$$
 (default $\zeta_{rth} = 0$)

New features (cont'd.)

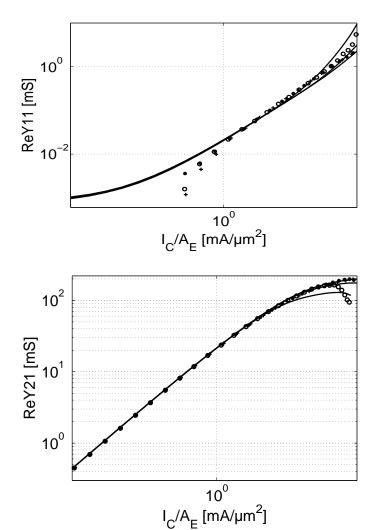
• Lateral NQS effect: switch back to version 2.23 implementation => use of "ddx" operator only for determination of diffusion capacitances (see slides of last meeting)

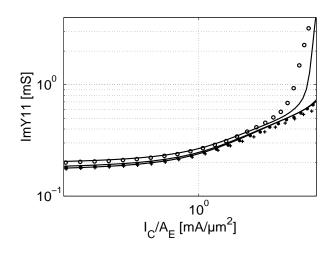
- Added additional "Gmin (=1e-12)" between internal collector & emitter node
 => for transfer current (I_T) source
- Temperature dependence of emitter transit time tef0 is removed
 - setting *flcomp=2.2* or *lower* makes former equations available
- Backward compatibility options through flag flcomp:
 - flcomp = 0 or 2.1 => old temperature dependence (v2.1 or older)
 - flcomp = 2.2 => temperature dependent equations of previous versions
 - flcomp = 2.3 => temperature dependence of tef0 is turned-off & new formulation for BE-recombination current is active

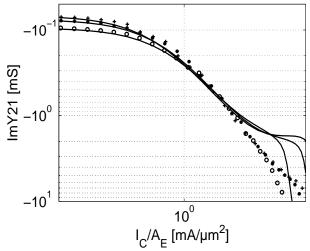

Newly added model parameters

Parameter	Default	Description
δςκ	2	Mobility field factor for I_{CK}
a _{hjEi}	0	Parameter describing the slope of $h_{jEi}(V_{BE})$
r _{hjEi}	1	Smoothing parameter for $h_{jEi}(V_{BE})$ at high voltage.
ΔV_{gBE}	0	Bandgap difference between base & BE-junction (for h_{jEi0} , h_{f0})
ShjEi	1	Temperature coefficient for a _{hjEi}
ζVgBE	1	Temperature coefficient for h _{jEi0}
h _{f0}	1	Weight factor for the low current minority charge
V _{cBar}	0	Barrier voltage
a _{cBar}	1	Smoothing parameter for barrier voltage
i _{cBar}	1	Normalization parameter
Srth	1	Temperature coefficient for R _{th}
K _{frE}	0	R _E flicker noise coefficient
A _{frE}	2	R _E flicker noise exponent factor

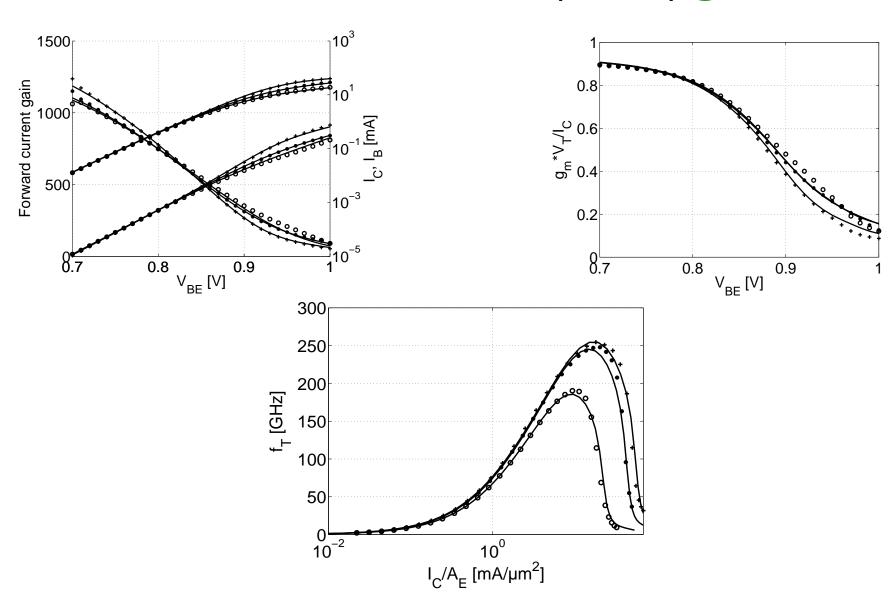
HICUM/L2 v2.30 experimental verification

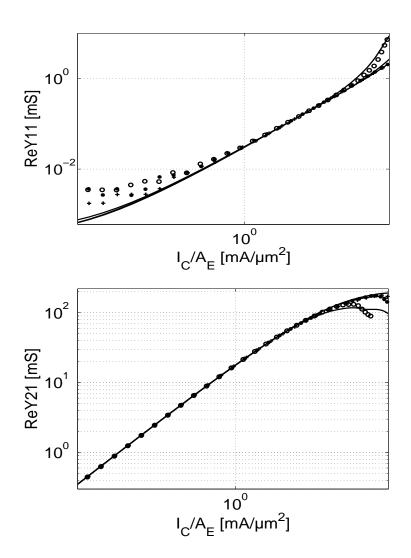

- various procss technologies: ST, IFX, IHP
- Selected results for advanced 250GHz (f_T) SiGe HBTs (from ST)
 - for more results see other presentations and upcoming publications
- Emitter area $A_E = 0.582 \mu m^2$
- Results are for $V_{BC} = \{0.5, 0, -0.5\}V$
- Verification for different temperatures: {-40, 27, 125} °C
- Symbols: Measured data, Lines: Hicum/L2v2.30

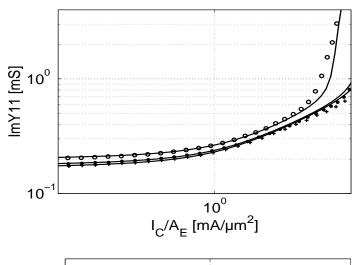

HICUM/L2 v2.30 verification @-40°C

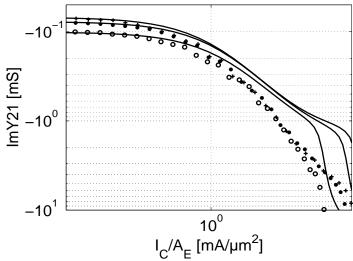


HICUM/L2 v2.30 verification (cont'd.) @-40°C

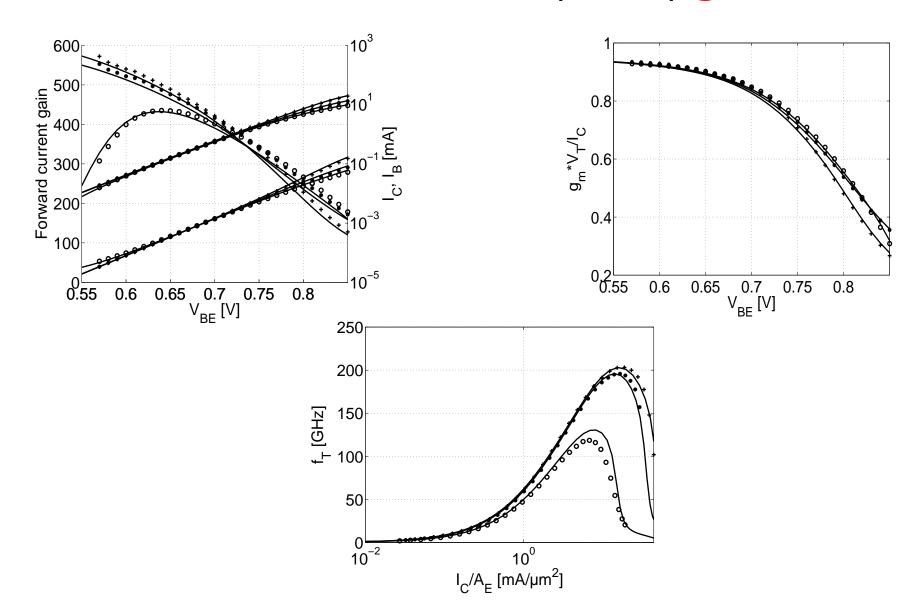

y-parameters @1GHz

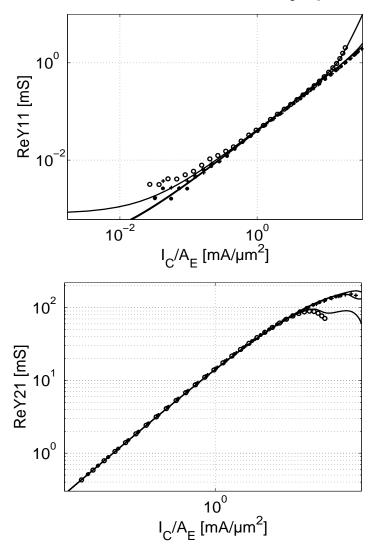


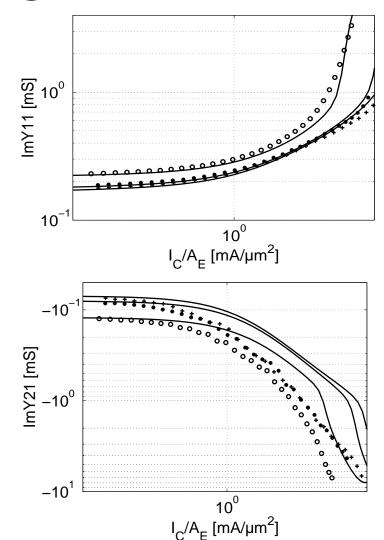

HICUM/L2 v2.30 verification (cont'd.) @27 °C



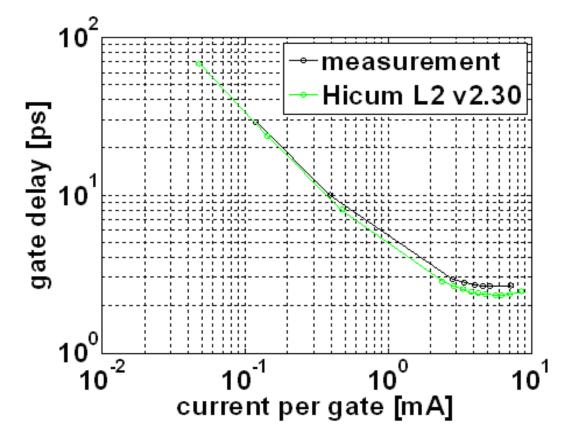
HICUM/L2 v2.30 verification (cont'd.) @27 °C


y-parameters @1GHz



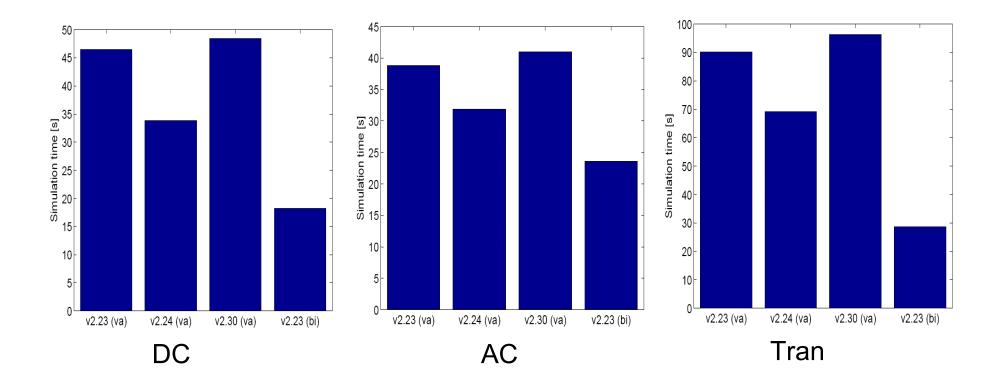

HICUM/L2 v2.30 verification (cont'd.) @125 °C

HICUM/L2 v2.30 verification (cont'd.) @125 °C


y-parameters @1GHz

HICUM/L2 v2.30 verification (cont'd.)

- CML Ring-Oscillator
 - HBT with 0.25 x 2.8 μm² emitter mask size (CEB contact configuration)

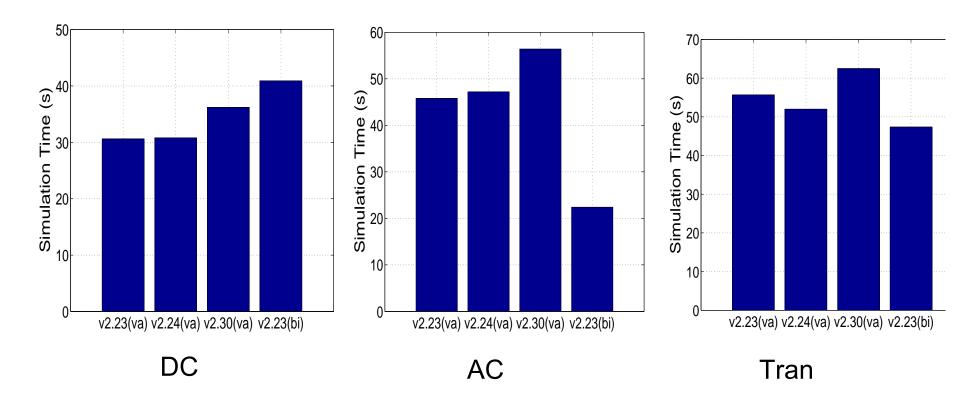

Ref: DotFive Deliverable report4.1.3

Model Run-Time Comparison

- Test bench:
 - DC-simulation: 20 devices in parallel, 17600 operating points
 - AC-simulation: 1 device, 187 operating points, 1500 frequency points
 - Transient simulation: ring-oscillator with 31 CML stages with two transistors
- HICUM versions tested:
 - HICUM Level 2, version 2.23 (Verilog-A code)
 - HICUM Level 2, version 2.24 (Verilog-A code)
 - HICUM Level 2, version 2.30 (Verilog-A code)
 - HICUM Level 2, version 2.23 (latest available ADS & Spectre built-in version)
- All newly implemented effects in Hicum/L2v2.30 are turned-off to obtain meaningful comparisons (need to use identical parameter sets with v2.23 as the least common denominator!!)

Model Run-Time Comparison (cont'd.)

Simulator: ADS (ADS2009U1), time in (s)


Observation

HICUM

- The ADS built-in model runs ~50% faster except for AC simulation
- Less time taken by V2.24 clearly shows absence of "ddx" operator

Model Run-Time Comparison (cont'd.)

• Simulator: Spectre (MMSIM 7.2), time in second

Observation

Spectre built-in version takes 30% more time than Verilog-A code in DC case
 => may be optimization problem during implementation

HICUM/L0 Support Activities

- Released new HICUM/L0 v1.3 => available on website since Feb. 2011
 - Developed primarily in cooperation with ST
- Access of source code restricted to users providing support for model development and implementation (not CMC "regulations" restricted)
 - Cadence received the code for implementation
- Primary features of HICUM/L0 v1.3
 - "Gmin (=1e-12)" implemented between collector and emitter node
 - AHQ, ZETAIQF changed to their proper names
 - Low-injection (junction related) base charge qj is now limited to positive value
 - Implementation of direct solution for transfer current
 - Cardano's method used for solving third order charge equation
 - it_mod=0 turns-off & brings back previous model (v1.2) equations
 - Temperature dependence of emitter transit time *tef0* removed (= new default)
 - setting tef_temp=1 makes former equations (v1.2) available

HICUM

Conclusions

new version HICUM/L2 v2.3

- includes relevant effects in advanced HBTs through physics-based formulations
- applied to several advanced process technologies
 => excellent accuracy obtained
- was publicly released in May
- planned to be applied to a variety of different technologies (incl. HV HBTs)

runtime comparisons for v2.23: VA vs built-in

- DC results
 - VA: ADS 50% slower than SPECTRE
 - built-in: ADS 3 times faster than SPECTRE
- TR results for built-in: ADS 50% faster than SPECTRE