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Introduction
Introduction

why SiGe BiCMOS & HBTs
• future mm-wave applications (e.g. sensors and imaging, communcations) require

transistors operating frequencies beyond 500GHz  
=>  out of reach for CMOS regarding output power, power gain, impedances, analog 
      characteristics

however ...
• Conventional technologies appear to approach their physical limits

=> general interest as to the "mileage left" for this technology 
=> explore physical limits of SiGe HBTs

Goals
• provide information on margins left for SiGe HBT technology 

• knowing the physical is important for creating a roadmap 
=> important for product planning
 © MS 3



Introduction
Introduction

• early predictions of limits
• Johnson limit: 200 GHz.V for Si BJTs, far exceeded by existing SiGe HBTs
• eighties: (fT, fmax) = (17,10)GHz for BJTs (0.4μm E width)

Technology predictions are very hard! 

=>  use as conservative assumptions as possible 

• requires understanding of physical effects occurring
in the future
=> need good physical models and simulation tools

• make judgement calls regarding practical limita-
tions

• alternatives: basically none (or do nothing)
 © MS 4



Methodology overview
Methodology overview
existing approaches

• fT, fmax estimate based on analytical (textbook) equations for most relevant time con-
stants  => do not capture physical effects in advanced structures (transport, break-
down, tunneling, 2D/3D, ...)

• mostly ignore parasitics (series resistances, BE spacer capacitance, metallization)

• device simulation using non-calibrated HD models  => predictions too optimistic

... vs. this approach
• most advanced and reliable transport models: BTE, calibrated HD

• Schroedinger-Poisson (BU) for tunneling currents (& evaluation of class. models)

• 2D effects (perimeter injection and charge, current spreading) from device simulation

• parasitic effects of BE spacer, metallization from electrostatic simulation

• series resistances from sheet resistances, estimated specific contact resistances 

• HICUM parameter extraction and generation for realistic device structure

• circuit simulation for obtaining figures of merit
 © MS 5



Methodology overview
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Methodology overview
Device simulation tools

• Boltzmann transport equation (BTE) solution 
• MC, SHE
• full band analysis (includes advanced non-parabolic full band fit, II)
• issue: too slow for profile optimization (& generating characteristics for parameter extraction)

• Hydrodynamic (HD)/energy transport (ET) simulation 
• moments of BTE: energy balance and flux in addition to DD
• careful calibration of additional parameters (relaxation time, fudge factors!)
• issues: 

- predictive capability limited to 1 process generation => need to re-calibrate
- cannot handle "too" steep profiles (e.g. Ge, heterojunctions)

• Calibration 
• examples see next slide
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Methodology overview
Calibration
selected examples (for details see BCTM 2010 paper)
impact ionization                                   relaxation time

=>  valid for process node and subsequent generation only

HD vs experimental results HD vs BTE
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1D scaling analysis
1D scaling analysis
• why 1D loop separately? 

• ultimate limits are expected to be determined by "1D" effects

• known constraints/boundary conditions
• max doping (B,E, bl)
• base width => punch-through
• BE and BC doping => tunneling
• sufficiently short E width  => q.s. charge reduction 

• figures of merit 
• fT (directly), fmax with assumed E width of 30nm)
• IC(VCE) curve shape (avoid negative output conductance) 

• scaling steps 
• additionally investigated physical effects: BTB and TA tunneling 

Notes: - SP solution yields lower tunneling current
            - tunneling models to be verified by experimental data

• investigated structural variations: E/B/C width and doping (incl. vertical spacers)
• evaluated roughly 100 different 1D profiles
• examples see next slides 
 © MS 9



1D scaling analysis
Intermediate results and issues
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1D scaling analysis
Final profile

• lower doped E  => reduce tunneling impact on forward characteristics

• base width not at minimum (slight reduction still possible) 

• C width shorter than II length => avalanche current does not increase anymore

• lower doped C  => reduce TAT;  little fT change if increased to 1018 cm-3 

• graded Ge through base and "lightly" doped E 

important data:
xjE = 10.5 nm

=>  wBm = 8.3 nm
wEl = 3.3 nm  =>  wBE 

wCi = 13.3 nm 
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1D scaling analysis
Decomposition of regional storage times
1D profile optimization

BE region causes largest contribution 
(regardless of lightly doped p or n spacer)
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1D scaling analysis
Collector breakdown mechanisms

=>  BTB tunneling likely to become dominant mechanism
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1D scaling analysis
1D electrical characteristics (final profile)
transit frequency                               Gummel characteristics

• reducing wEl to zero (=> conventional emitter doping profile)
• 10% higher peak fT, but lower fT at low JC and higher tunneling current impact at low VBE 

=> fT = 1.5 THz appears to be (roughly) the isothermal limit
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1D scaling analysis
Summary of 1D process parameters
 

parameters initial 
profile

ultimate 
limit

NBmax (cm-3) 6 1019 2.4 1020

wBm (nm) 9 8.3

wBl (nm) 0 3.3

wCi (nm) 58 13.3

fT (THz) @ VBC = -1V 0.46 1.47 (BTE)

JC (mA/μm2) @ peak fT 13 65 (BTE)

BVCEO (V) @ VBE = 0.7V 1.37 1.4 (HD)

RSBi0 (Ω/sq) 6100 2770

CjEi0 (fF/μm2) 7.8 14.1

CjCi0 (fF/μm2) 4.3 7.9
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1D scaling analysis
Verification of fT determination
• usually obtained from quasi-static (QU) method  =>  allows regional analysis

• for long neutral regions (cf. IMEC emitter profile)  =>  non-QS effects
=> QU method yields much lower transit frequency

• correct values obtained from applying measurement (AC) method (extrap. from |ß|)
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Compact model
Compact model
• HICUM v2.3 (!!)

• parameter extraction (as physics-based as possible)  =>  1D results

=> excellent accuracy over relevant bias range 
=> suitable as basis for 2D/3D simulations of figures of merit 
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Compact model
2D/3D effects and parasitics
• junction perimeter to area currents and capacitances via ratio parameter

• BE spacer and contact metallization capacitance

electrostatic analysis of spacer and contact (BE, BC) structure
 => scalable analytical model
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Compact model
Example: BE spacer electrostatic analysis
field lines from Poisson solver

• similar analysis for parasitic BC and contact metallization capacitances

=> all relevant parasitic capacitances included 

(plot laterally stretched to reflect true dimensions) 
 © MS 19



3D scaling analysis
3D scaling analysis
Goal: find lateral dimensions yielding balanced device design (fmax ≥ fT)

• starting point: B4T design rules, B30x extrapolations
=> simultaneous lateral shrink of all dimensions using TRADICA scaling factor

• assumed device structure is still fairly conventional 

=> conservative estimate, leaves margin for innovative changes

 © MS 20



3D scaling analysis
Sensitivity w.r.t. selected critical parameters
emitter contact resistance                      parasitic BE capacitance 

=> increasing parasitics at given process "node" slightly shifts lateral 
scaling for balanced design to the right 
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3D scaling analysis
HBT structure towards ultimate limits 

• almost 1D current flow

• no deep trench necessary

• low-ohmic buried layer (possibly silicided)
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Electrothermal considerations
Electrothermal considerations
heat flux and temperature distribution (bE0 = 0.03 μm, lE0 = 3bE0)

=>  bulk structure fabrication appears feasible (acc. to process eng.)

bulk structure SOI structurePdis = 0.4mW 

heat flux mostly through bulk heat flux equally through contacts
 © MS 23



Electrothermal considerations
Electrothermal considerations
• Rth from 3D thermal simulator, Cth estimated from Rth and time constant

• temperature coefficients from combination of device simulations (mostly 1D ele-
ments) and of experimental data on existing processes (external elements) 

• temperature increase for 60% scaling 

=> tolerable T increase up to peak fT, fmax 
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Electrothermal considerations
Safe Operating Area
• calculated anaytically from TCs, including BTB Tunneling and avalanche current  

=>  surprisingly high BC breakdown voltage in useful bias range

snapback current density

snapback s.h. only
 © MS 25



Electrothermal considerations
Summary of 3D scaling

Issues
• electromigration (JC > 150mA/μm2 at peak fT, fmax)

• steep doping profiles (especially base) and integration into CMOS

• parasitics: metallization, contacts (especially emitter), access regions (base link)

                          scaling factor
electrical parameters

60% 50% 40%

bE0 (nm) 30 25 20

lE0 (nm) 90 75 60

RTh (K/mW) 84 105 142

fmax (THz) @ JC (mA/μm2) 1.37 @ 106 1.60 @ 109 1.91 @ 119

peak fT (THz) @ JC (mA/μm2) 1.01 @ 131 0.99 @ 144 0.95 @ 155

τCML (ps) @ JC (mA/μm2) 0.57 @ 280 0.52 @ 301 0.52 @ 419
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Conclusions
Conclusions

• A set of calibrated simulation tools was used for predicting performance limit of
SiGeC HBTs

• 1D fT limit is around 1.5 THz

• 2D/3D limit is around (fT, fmax) = (1.2, 1.5) ... (1.1, 2.2) THz at BVCEO > 1V and emit-
ter contact width of 30 ... 20 nm 

• Further shrink improves fmax, tCML somewhat but at expense of significant fT drop 

• Biggest challenges 
• high current density at peak (fT, fmax)  =>  exceeding existing electromigration limits

• reduction of emitter resistance to at least 0.5Wμm2 
• steep doping profiles

                   => significant innovation required to achieve physical limits

=> prediction of SiGeC HBT performance limit facilitates 
roadmap generation
 © MS 27
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	Introduction
	why SiGe BiCMOS & HBTs
	• future mm-wave applications (e.g. sensors and imaging, communcations) require transistors operating frequencies beyond 500GHz => out of reach for CMOS regarding output power, power gain, impedances, analog characteristics

	however ...
	• Conventional technologies appear to approach their physical limits => general interest as to the "mileage left" for this technology => explore physical limits of SiGe HBTs

	Goals
	• provide information on margins left for SiGe HBT technology
	• knowing the physical is important for creating a roadmap => important for product planning


	Introduction
	• early predictions of limits
	• Johnson limit: 200 GHz.V for Si BJTs, far exceeded by existing SiGe HBTs
	• eighties: (fT, fmax) = (17,10)GHz for BJTs (0.4mm E width)

	Technology predictions are very hard!
	• requires understanding of physical effects occurring in the future => need good physical models and simulation tools
	• make judgement calls regarding practical limitations
	• alternatives: basically none (or do nothing)

	=> use as conservative assumptions as possible

	Methodology overview
	existing approaches
	• fT, fmax estimate based on analytical (textbook) equations for most relevant time constants => do not capture physical effects in advanced structures (transport, breakdown, tunneling, 2D/3D, ...)
	• mostly ignore parasitics (series resistances, BE spacer capacitance, metallization)
	• device simulation using non-calibrated HD models => predictions too optimistic

	... vs. this approach
	• most advanced and reliable transport models: BTE, calibrated HD
	• Schroedinger-Poisson (BU) for tunneling currents (& evaluation of class. models)
	• 2D effects (perimeter injection and charge, current spreading) from device simulation
	• parasitic effects of BE spacer, metallization from electrostatic simulation
	• series resistances from sheet resistances, estimated specific contact resistances
	• HICUM parameter extraction and generation for realistic device structure
	• circuit simulation for obtaining figures of merit


	Flowchart
	Device simulation tools
	• Boltzmann transport equation (BTE) solution
	• MC, SHE
	• full band analysis (includes advanced non-parabolic full band fit, II)
	• issue: too slow for profile optimization (& generating characteristics for parameter extraction)

	• Hydrodynamic (HD)/energy transport (ET) simulation
	• moments of BTE: energy balance and flux in addition to DD
	• careful calibration of additional parameters (relaxation time, fudge factors!)
	• issues: - predictive capability limited to 1 process generation => need to re-calibrate - cannot handle "too" steep profiles (e.g. Ge, heterojunctions)

	• Calibration
	• examples see next slide


	Calibration
	selected examples (for details see BCTM 2010 paper)
	impact ionization relaxation time
	=> valid for process node and subsequent generation only

	1D scaling analysis
	• why 1D loop separately?
	• ultimate limits are expected to be determined by "1D" effects

	• known constraints/boundary conditions
	• max doping (B,E, bl)
	• base width => punch-through
	• BE and BC doping => tunneling
	• sufficiently short E width => q.s. charge reduction

	• figures of merit
	• fT (directly), fmax with assumed E width of 30nm)
	• IC(VCE) curve shape (avoid negative output conductance)

	• scaling steps
	• additionally investigated physical effects: BTB and TA tunneling Notes: - SP solution yields lower tunneling current - tunneling models to be verified by experimental data
	• investigated structural variations: E/B/C width and doping (incl. vertical spacers)
	• evaluated roughly 100 different 1D profiles
	• examples see next slides


	Intermediate results and issues
	Final profile
	• lower doped E => reduce tunneling impact on forward characteristics
	• base width not at minimum (slight reduction still possible)
	• C width shorter than II length => avalanche current does not increase anymore
	• lower doped C => reduce TAT; little fT change if increased to 1018 cm-3
	• graded Ge through base and "lightly" doped E

	Decomposition of regional storage times
	1D profile optimization
	BE region causes largest contribution (regardless of lightly doped p or n spacer)

	Collector breakdown mechanisms
	=> BTB tunneling likely to become dominant mechanism

	1D electrical characteristics (final profile)
	transit frequency Gummel characteristics
	• reducing wEl to zero (=> conventional emitter doping profile)
	• 10% higher peak fT, but lower fT at low JC and higher tunneling current impact at low VBE


	=> fT = 1.5 THz appears to be (roughly) the isothermal limit

	Summary of 1D process parameters
	parameters
	initial profile
	ultimate limit
	NBmax (cm-3)
	6 1019
	2.4 1020
	wBm (nm)
	9
	8.3
	wBl (nm)
	0
	3.3
	wCi (nm)
	58
	13.3
	fT (THz) @ VBC = -1V
	0.46
	1.47 (BTE)
	JC (mA/mm2) @ peak fT
	13
	65 (BTE)
	BVCEO (V) @ VBE = 0.7V
	1.37
	1.4 (HD)
	RSBi0 (W/sq)
	6100
	2770
	CjEi0 (fF/mm2)
	7.8
	14.1
	CjCi0 (fF/mm2)
	4.3
	7.9


	Verification of fT determination
	• usually obtained from quasi-static (QU) method => allows regional analysis
	• for long neutral regions (cf. IMEC emitter profile) => non-QS effects => QU method yields much lower transit frequency
	• correct values obtained from applying measurement (AC) method (extrap. from |ß|)
	• AC method not available for BTE solution
	• used HD simulation (as "proof of concept")
	• QU method slightly underestimates fT at low and medium current densities for the structure(s) found
	• longer E region still yields similar fT (from AC method) as proposed structure

	Compact model
	• HICUM v2.3 (!!)
	• parameter extraction (as physics-based as possible) => 1D results
	=> excellent accuracy over relevant bias range
	=> suitable as basis for 2D/3D simulations of figures of merit

	2D/3D effects and parasitics
	• junction perimeter to area currents and capacitances via ratio parameter
	• BE spacer and contact metallization capacitance
	electrostatic analysis of spacer and contact (BE, BC) structure => scalable analytical model

	Example: BE spacer electrostatic analysis
	field lines from Poisson solver
	• similar analysis for parasitic BC and contact metallization capacitances

	=> all relevant parasitic capacitances included

	3D scaling analysis
	Goal: find lateral dimensions yielding balanced device design (fmax ³ fT)
	• starting point: B4T design rules, B30x extrapolations => simultaneous lateral shrink of all dimensions using TRADICA scaling factor
	• assumed device structure is still fairly conventional

	=> conservative estimate, leaves margin for innovative changes

	Sensitivity w.r.t. selected critical parameters
	emitter contact resistance parasitic BE capacitance
	=> increasing parasitics at given process "node" slightly shifts lateral scaling for balanced design to the right

	HBT structure towards ultimate limits
	• almost 1D current flow
	• no deep trench necessary
	• low-ohmic buried layer (possibly silicided)

	Electrothermal considerations
	heat flux and temperature distribution (bE0 = 0.03 mm, lE0 = 3bE0)
	=> bulk structure fabrication appears feasible (acc. to process eng.)

	Electrothermal considerations
	• Rth from 3D thermal simulator, Cth estimated from Rth and time constant
	• temperature coefficients from combination of device simulations (mostly 1D elements) and of experimental data on existing processes (external elements)
	• temperature increase for 60% scaling
	=> tolerable T increase up to peak fT, fmax

	Safe Operating Area
	• calculated anaytically from TCs, including BTB Tunneling and avalanche current
	=> surprisingly high BC breakdown voltage in useful bias range
	Summary of 3D scaling
	scaling factor
	electrical parameters
	60%
	50%
	40%
	bE0 (nm)
	30
	25
	20
	lE0 (nm)
	90
	75
	60
	RTh (K/mW)
	84
	105
	142
	fmax (THz) @ JC (mA/mm2)
	1.37 @ 106
	1.60 @ 109
	1.91 @ 119
	peak fT (THz) @ JC (mA/mm2)
	1.01 @ 131
	0.99 @ 144
	0.95 @ 155
	tCML (ps) @ JC (mA/mm2)
	0.57 @ 280
	0.52 @ 301
	0.52 @ 419

	Issues
	• electromigration (JC > 150mA/mm2 at peak fT, fmax)
	• steep doping profiles (especially base) and integration into CMOS
	• parasitics: metallization, contacts (especially emitter), access regions (base link)


	Conclusions
	• A set of calibrated simulation tools was used for predicting performance limit of SiGeC HBTs
	• 1D fT limit is around 1.5 THz
	• 2D/3D limit is around (fT, fmax) = (1.2, 1.5) ... (1.1, 2.2) THz at BVCEO > 1V and emitter contact width of 30 ... 20 nm
	• Further shrink improves fmax, tCML somewhat but at expense of significant fT drop
	• Biggest challenges
	• high current density at peak (fT, fmax) => exceeding existing electromigration limits
	• reduction of emitter resistance to at least 0.5Wmm2
	• steep doping profiles

	=> significant innovation required to achieve physical limits
	=> prediction of SiGeC HBT performance limit facilitates roadmap generation


