Physical limits of high-speed SiGe HBT performance

M. Schroter^{1,2}, G. Wedel¹, J. Krause¹, B. Heinemann³, C. Jungemann⁴, P. Chevalier⁵, A. Chantre⁵, N. Rinaldi⁶

¹Technical University Dresden, Chair for Electron Devces & Integrated Circuits, 01062 Dresden, Germany

²University of California San Diego, ECE Dept., La Jolla, USA

³IHP, Frankfurt (Oder), Germany

⁴RWTH Aachen University, Aachen, Germany

⁵ST Microelectronics, Crolles, France

⁶University of Naples, Naples, Italy

Bordeaux June 28/29, 2011

OUTLINE

- Introduction
- Methodology overview
- 1D scaling analysis
- Compact model
- 3D scaling analysis
- Electrothermal considerations
- Conclusions

Introduction

why SiGe BiCMOS & HBTs

- future mm-wave applications (e.g. sensors and imaging, communications) require transistors operating frequencies beyond 500GHz
 - => out of reach for CMOS regarding output power, power gain, impedances, analog characteristics

however ...

- Conventional technologies appear to approach their physical limits
 - => general interest as to the "mileage left" for this technology
 - => explore physical limits of SiGe HBTs

Goals

- provide information on margins left for SiGe HBT technology
- knowing the physical is important for creating a roadmap
 important for product planning

Introduction

- early predictions of limits
 - Johnson limit: 200 GHz·V for Si BJTs, far exceeded by existing SiGe HBTs
 - eighties: $(f_T, f_{max}) = (17,10)GHz$ for BJTs $(0.4\mu m E width)$

Technology predictions are very hard!

- requires understanding of physical effects occurring in the future
 - => need good physical models and simulation tools
- make judgement calls regarding practical limitations
- alternatives: basically none (or do nothing)

=> use as conservative assumptions as possible

Methodology overview

existing approaches

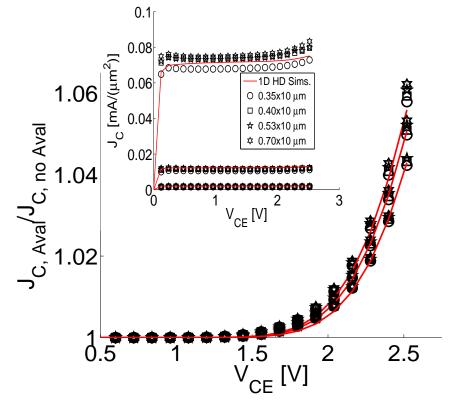
- f_T, f_{max} estimate based on analytical (textbook) equations for most relevant time constants => do not capture physical effects in advanced structures (transport, breakdown, tunneling, 2D/3D, ...)
- mostly ignore parasitics (series resistances, BE spacer capacitance, metallization)
- device simulation using non-calibrated HD models => predictions too optimistic

... vs. this approach

- most advanced and reliable transport models: BTE, calibrated HD
- Schroedinger-Poisson (BU) for tunneling currents (& evaluation of class. models)
- 2D effects (perimeter injection and charge, current spreading) from device simulation
- parasitic effects of BE spacer, metallization from electrostatic simulation
- series resistances from sheet resistances, estimated specific contact resistances
- HICUM parameter extraction and generation for realistic device structure
- circuit simulation for obtaining figures of merit

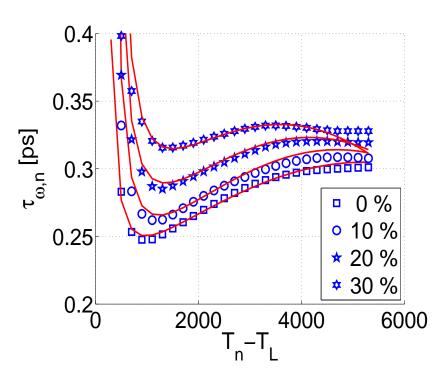
Flowchart physical, chemical, electrical boundary cond. lateral shrink: sweep dimensions 1D device simulation thermal simulation (BTE, HD) ⇒ maximum temperature speed increase change @ accept. char doping profile relax shrink generate model card (min. dimensions) 2D device simulation ⇒ perim., distrib. eff. circuit simulation ⇒ figures of merit 2D/3D electrostatics modify ⇒ external parasitics balanced design structure electrical thermal, EM parameter extraction SOA analysis (specific, HICUM) limit found

Device simulation tools


- Boltzmann transport equation (BTE) solution
 - MC, SHE
 - full band analysis (includes advanced non-parabolic full band fit, II)
 - issue: too slow for profile optimization (& generating characteristics for parameter extraction)
- Hydrodynamic (HD)/energy transport (ET) simulation
 - moments of BTE: energy balance and flux in addition to DD
 - careful calibration of additional parameters (relaxation time, fudge factors!)
 - issues:
 - predictive capability limited to 1 process generation => need to re-calibrate
 - cannot handle "too" steep profiles (e.g. Ge, heterojunctions)
- Calibration
 - · examples see next slide

Calibration

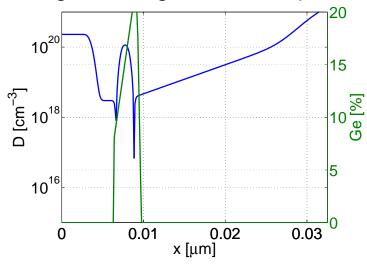
selected examples (for details see BCTM 2010 paper)


impact ionization

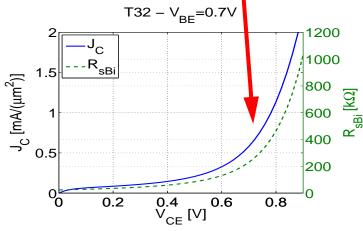
HD vs experimental results

relaxation time

HD vs BTE

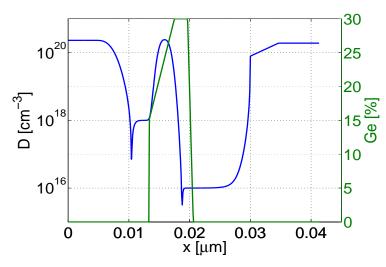

=> valid for process node and subsequent generation only

1D scaling analysis

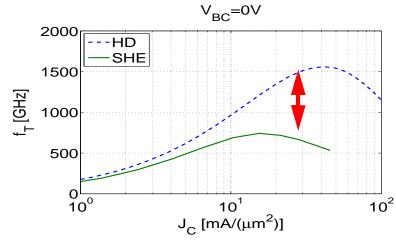

- why 1D loop separately?
 - ultimate limits are expected to be determined by "1D" effects
- known constraints/boundary conditions
 - max doping (B,E, bl)
 - base width => punch-through
 - BE and BC doping => tunneling
 - sufficiently short E width => q.s. charge reduction
- figures of merit
 - f_T (directly), f_{max} with assumed E width of 30nm)
 - I_C(V_{CF}) curve shape (avoid negative output conductance)
- scaling steps
 - additionally investigated physical effects: BTB and TA tunneling Notes: - SP solution yields lower tunneling current
 - tunneling models to be verified by experimental data
 - investigated structural variations: E/B/C width and doping (incl. vertical spacers)
 - evaluated roughly 100 different 1D profiles
 - examples see next slides

Intermediate results and issues

straight scaling of 500GHz profile

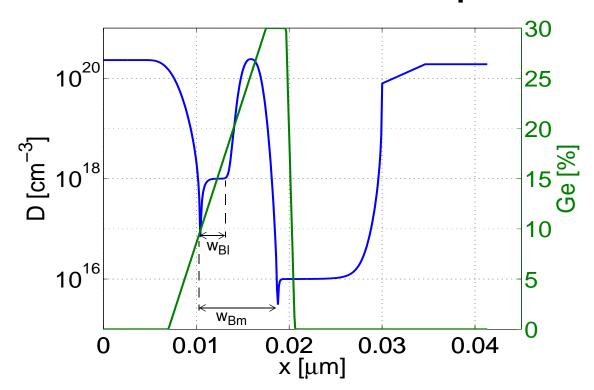


=> base punch-through (vs. II, tun.)



=> optimize profile shape(s)

optimized profile & performance. verific.



=> HD simulation issues

=> BTE solution used as reference

Final profile

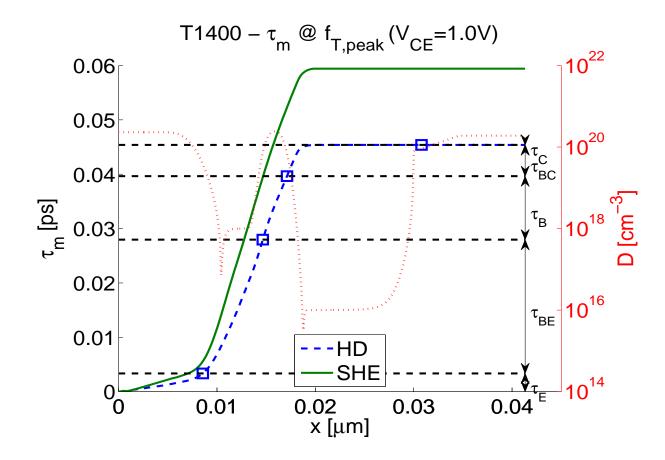
important data:

$$x_{jE} = 10.5 \text{ nm}$$

 $x_{jC} = 18.8 \text{ nm}$
=> $w_{Bm} = 8.3 \text{ nm}$
 $w_{El} = 3.3 \text{ nm} => w_{BE}$
 $w_{Eh} = 10.3 \text{ nm}$
 $w_{Ci} = 13.3 \text{ nm}$

peak
$$f_T = 1385$$
 GHz
 $J_C(f_{T,peak}) = 63$ mA/ μ m²

- lower doped E => reduce tunneling impact on forward characteristics
- base width not at minimum (slight reduction still possible)
- C width shorter than II length => avalanche current does not increase anymore
- lower doped C => reduce TAT; little f_T change if increased to 10^{18} cm⁻³
- graded Ge through base and "lightly" doped E

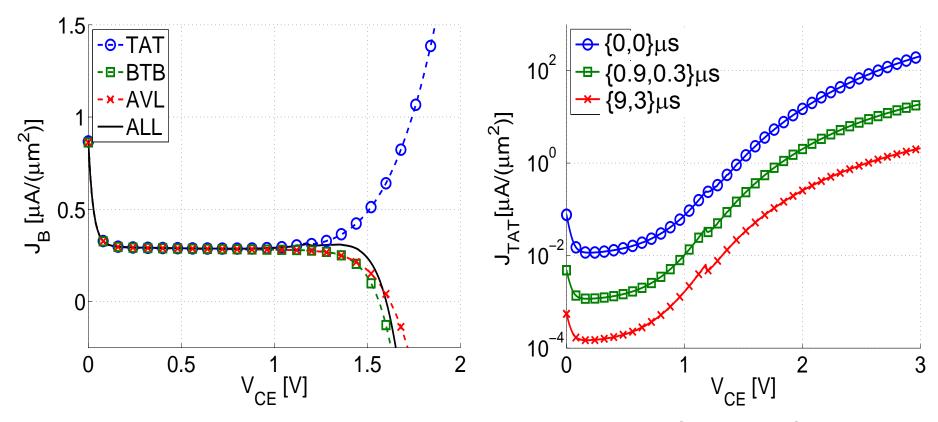

Decomposition of regional storage times

1D profile optimization

accumulated storage time:

$$\tau(x) = q \int_0^x \frac{dm}{dJ_C} \bigg|_{V_{CE}} dx$$

m: minority carrier density


BE region causes largest contribution

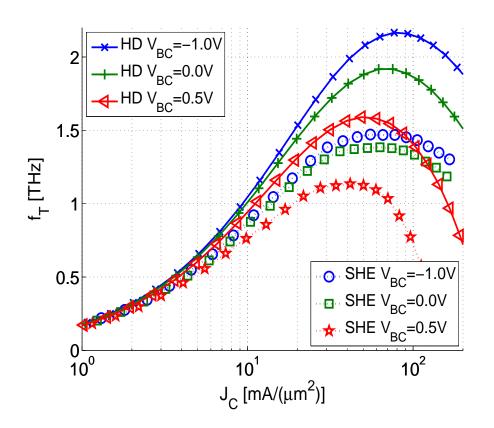
(regardless of lightly doped p or n spacer)

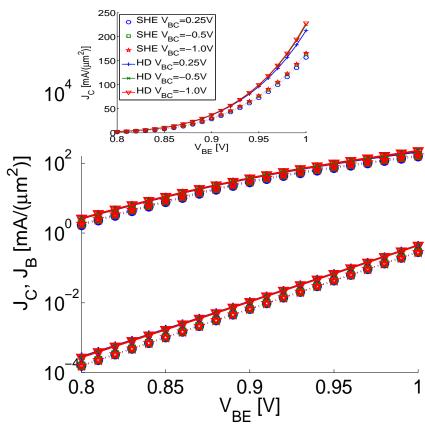
Collector breakdown mechanisms

base current components

TAT component

compensation of BTB, AVL by TAT


variation of carrier lifetime uncertainty due to lack of exp. data

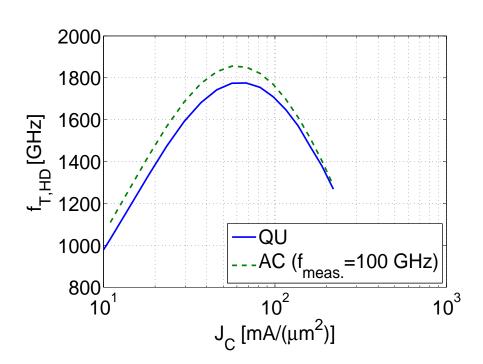

=> BTB tunneling likely to become dominant mechanism

1D electrical characteristics (final profile)

transit frequency

Gummel characteristics

- reducing w_{FI} to zero (=> conventional emitter doping profile)
 - 10% higher peak f_T, but lower f_T at low J_C and higher tunneling current impact at low V_{BE}

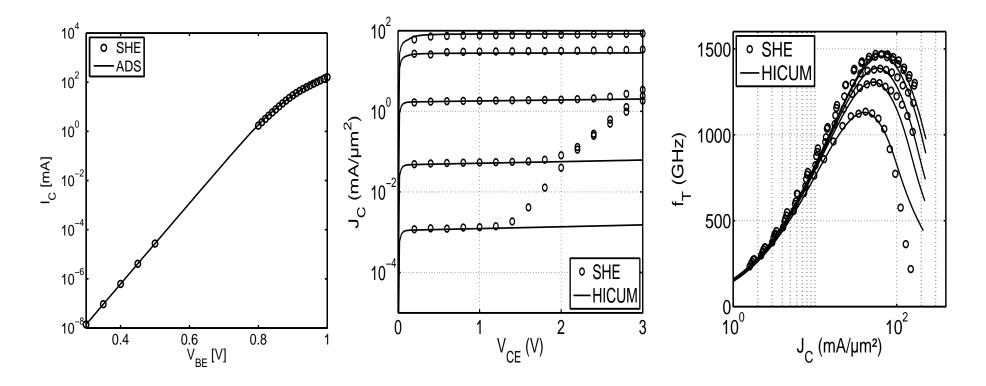

 $=> f_T = 1.5$ THz appears to be (roughly) the *isothermal* limit

Summary of 1D process parameters

parameters	initial profile	ultimate limit	
N _{Bmax} (cm ⁻³)	6 10 ¹⁹	2.4 10 ²⁰	
w _{Bm} (nm)	9	8.3	
w _{BI} (nm)	0	3.3 13.3	
w _{Ci} (nm)	58		
f _T (THz) @ V _{BC} = -1V	0.46	1.47 (BTE)	
J _C (mA/μm²) @ peak f _T	13	65 (BTE)	
BV _{CEO} (V) @ V _{BE} = 0.7V	1.37	1.4 (HD)	
R _{SBi0} (Ω/sq)	6100	2770	
C _{jEi0} (fF/μm ²)	7.8	14.1	
C _{jCi0} (fF/μm ²)	4.3	7.9	

Verification of f_T **determination**

- usually obtained from quasi-static (QU) method => allows regional analysis
- for long neutral regions (cf. IMEC emitter profile) => non-QS effects
 => QU method yields much lower transit frequency
- correct values obtained from applying measurement (AC) method (extrap. from |\mathbb{B}|)

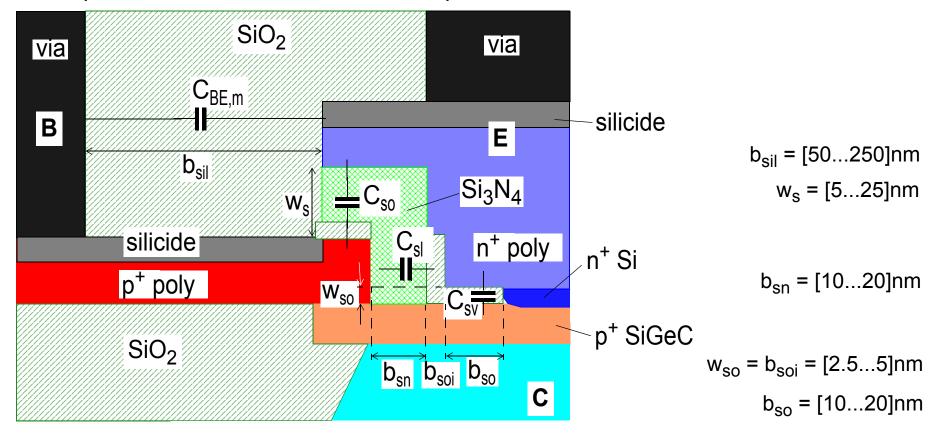


- AC method not available for BTE solution
- used HD simulation (as "proof of concept")
- QU method slightly underestimates f_T at low and medium current densities for the structure(s) found
- longer E region still yields similar f_T (from AC method) as proposed structure

=> optimization result using QU method yields correct f_T

Compact model

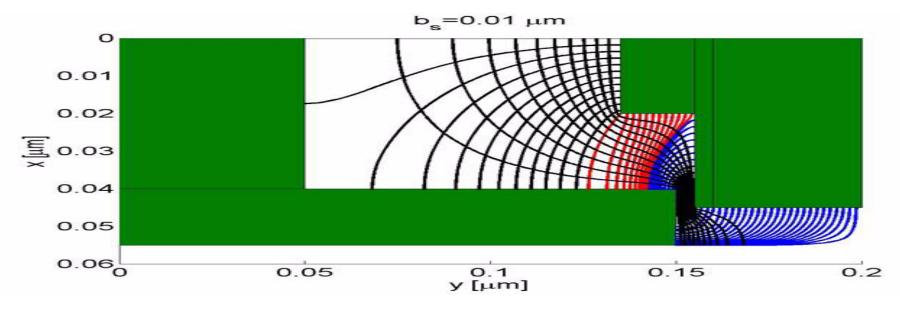
- HICUM v2.3 (!!)
- parameter extraction (as physics-based as possible) => 1D results



=> excellent accuracy over relevant bias range

=> suitable as basis for 2D/3D simulations of figures of merit

2D/3D effects and parasitics

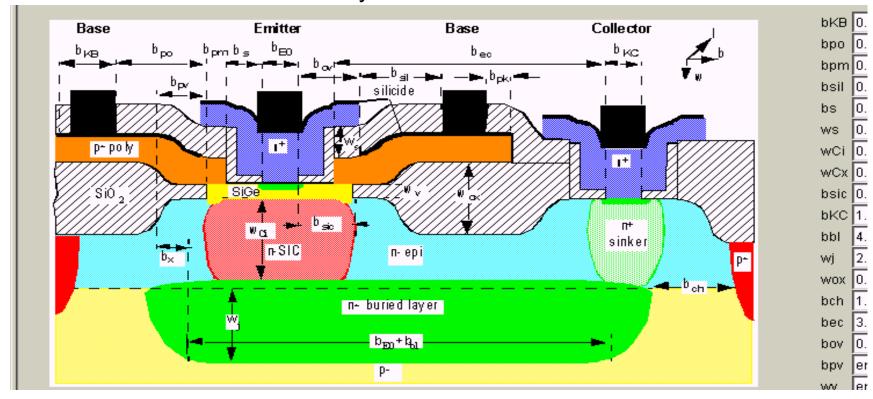

- junction perimeter to area currents and capacitances via ratio parameter
- BE spacer and contact metallization capacitance

electrostatic analysis of spacer and contact (BE, BC) structure => scalable analytical model

Example: BE spacer electrostatic analysis

field lines from Poisson solver

(plot laterally stretched to reflect true dimensions)


• similar analysis for parasitic BC and contact metallization capacitances

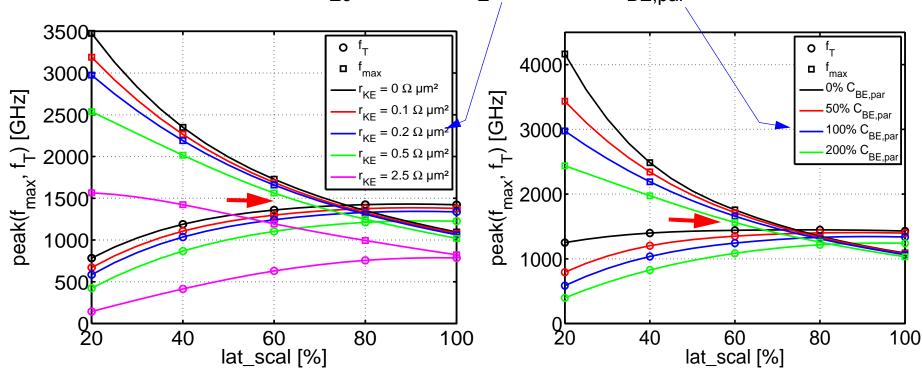
=> all relevant parasitic capacitances included

3D scaling analysis

Goal: find lateral dimensions yielding balanced device design (f_{max} ≥ f_T)

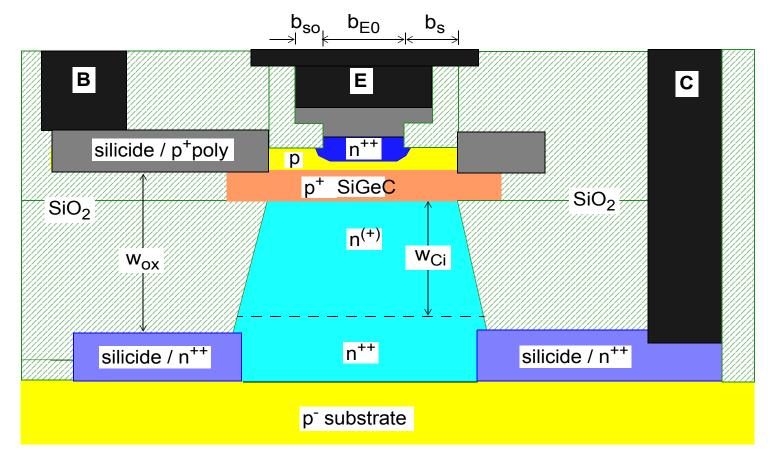
- starting point: B4T design rules, B30x extrapolations
 simultaneous lateral shrink of all dimensions using TRADICA scaling factor
- assumed device structure is still fairly conventional

=> conservative estimate, leaves margin for innovative changes


Sensitivity w.r.t. selected critical parameters

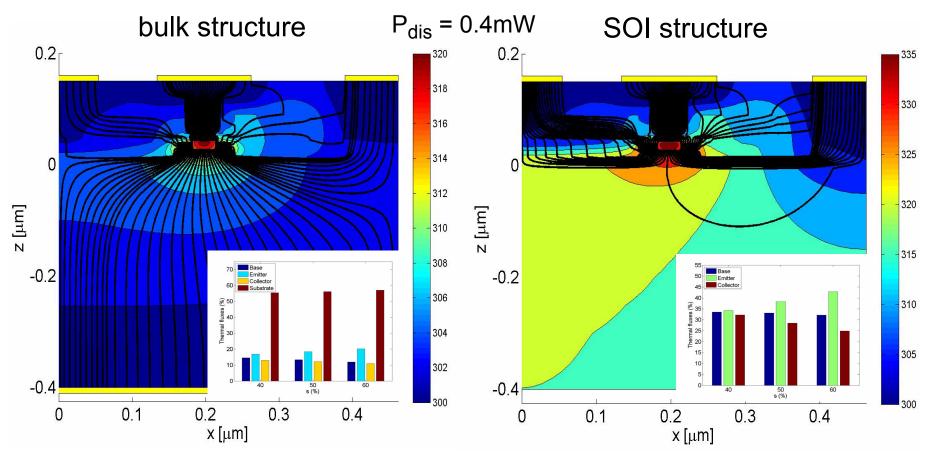
emitter contact resistance

parasitic BE capacitance


reference transistor size = $0.05*1 \mu m^2$

(at intercept: b_{E0} = 37 nm, R_E = 5 $\Omega\mu$ m, $C_{BE,par}$ = 0.36 fF/ μ m)

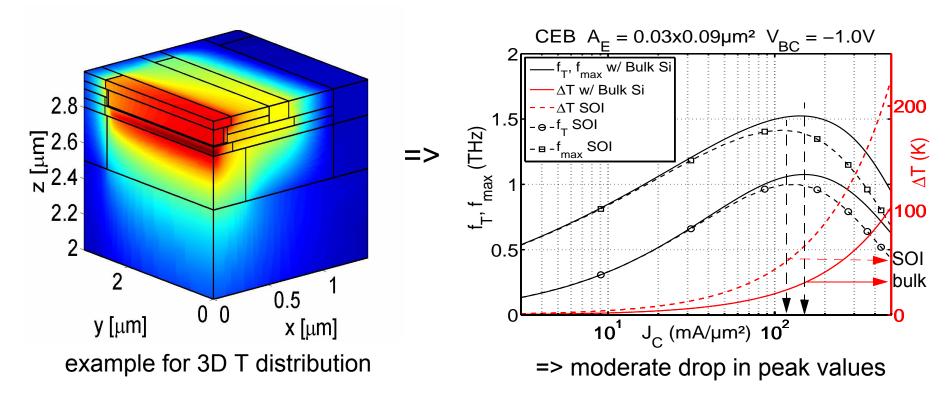
=> increasing parasitics at given process "node" slightly shifts lateral scaling for *balanced* design to the right


HBT structure towards ultimate limits

- almost 1D current flow
- no deep trench necessary
- low-ohmic buried layer (possibly silicided)

Electrothermal considerations

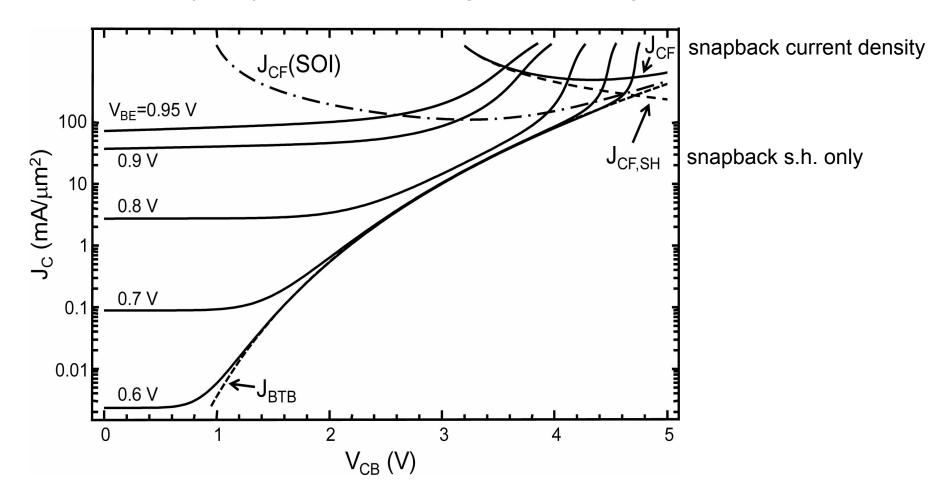
heat flux and temperature distribution ($b_{E0} = 0.03 \mu m$, $I_{E0} = 3b_{E0}$)


heat flux mostly through bulk

heat flux equally through contacts

=> bulk structure fabrication appears feasible (acc. to process eng.)

Electrothermal considerations


- R_{th} from 3D thermal simulator, C_{th} estimated from R_{th} and time constant
- temperature coefficients from combination of device simulations (mostly 1D elements) and of experimental data on existing processes (external elements)
- temperature increase for 60% scaling

=> tolerable T increase up to peak f_T, f_{max}

Safe Operating Area

• calculated anaytically from TCs, including BTB Tunneling and avalanche current

=> surprisingly high BC breakdown voltage in useful bias range

Summary of 3D scaling

scaling factor	60%	50%	40%
electrical parameters			
b _{E0} (nm)	30	25	20
I _{E0} (nm)	90	75	60
R _{Th} (K/mW)	84	105	142
f _{max} (THz) @ J _C (mA/μm ²)	1.37 @ 106	1.60 @ 109	1.91 @ 119
peak f _T (THz) @ J _C (mA/μm ²)	1.01 @ 131	0.99 @ 144	0.95 @ 155
$τ_{CML}$ (ps) @ J_C (mA/μm ²)	0.57 @ 280	0.52 @ 301	0.52 @ 419

Issues

- electromigration ($J_C > 150 \text{mA/}\mu\text{m}^2$ at peak f_T , f_{max})
- steep doping profiles (especially base) and integration into CMOS
- parasitics: metallization, contacts (especially emitter), access regions (base link)

Conclusions

- A set of calibrated simulation tools was used for predicting performance limit of SiGeC HBTs
- 1D f_T limit is around 1.5 THz
- 2D/3D limit is around (f_T , f_{max}) = (1.2, 1.5) ... (1.1, 2.2) THz at BVCEO > 1V and emitter contact width of 30 ... 20 nm
- Further shrink improves f_{max}, t_{CML} somewhat but at expense of significant f_T drop
- Biggest challenges
 - high current density at peak $(f_T, f_{max}) =>$ exceeding existing electromigration limits
 - reduction of emitter resistance to at least 0.5Wμm²
 - steep doping profiles
 - => significant innovation required to achieve physical limits

=> prediction of SiGeC HBT performance limit facilitates roadmap generation