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Outline

• BJT/HBT transfer current and (hole) charge 

• the principal low bias charge formula

• overview of the AC linked model approaches

• the generic low bias charge concept

• AC linked & bandgap feature temperature dependences

• model implementation

Note: fully rigorous treatments are included in [1]
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Transfer Current and Charge
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Low bias hole charge
The effective doping density has been suggested in [4] as

An analytic technique – not used so far - will be adopted for 

model construction enabling a consistent discussion of the 

bias and temperature controlled operation modes
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The Moll-Ross-Gummel or MRG function is introduced by

Variable bandgap in the base makes the MRG function 

temperature dependent.
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Low bias hole charge, cont.’d

At low bias in the forward active mode the hole density is 

negligible in the emitter and collector n-type quasineutral regions.

Shaded rectangles represent the electrostatic (ES) charge of the 

doping centers when the depletion layer boundaries are displaced 

from their equilibrium (zero subscripted) positions.
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The principal low bias charge formula

Apply a small forward bias increment to the BE junction
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The MRG charges are the weighted integrals of the capacitances.

A linear MRG to AC charge relationship assumed in all 

present models is not a mandatory approximation!

Emitter MRG charge

Collector MRG charge
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Approximation of the MRG charges by averages

Second mean value theorem of integrals yields
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AC linked approaches
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Problems with AC linked approaches, all models
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The generic low bias charge approach, primitives
No theoretical coercion exists which should demand an AC charge 

term in the related MRG charge expression

• Maxwell equation div(D)=σ linking electrical displacement to space 
charge is valid for any kinds of spatial charge distributions

• 1D integral form –Gauss‘ theorem - implies depletion capacitance and 
charge relations

• Semi-empirical capacitance relations do not restrict the shape of the
charge distribution i.e. shape of the doping concentration N(x)

• Consequently C-Q type functions can be constructed to any N(x) 
incl. the effective doping concentration Neff(x) as well [4]
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The generic low bias charge approach, formulation
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• MRG charge parameters are extracted from the DC data

• Moderate VB shift by Ge content directly addressed at extraction

• MRG „depletion boundaries“ differ from AC ones but this is indifferent 
from DC point of view (positions do not control anything)

Each junction shall be attributed a pair of independent MRG and AC 

charge component to, the former responsible for the DC, the latter for 

the AC behaviour
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The generic low bias charge approach, example
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Temperature dependence: homobandgap

Total derivative w.r.t. temperature:

The emitter part from the AC linked approach reads
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Temperature dependence: homobandgap, cont.’d

First term:

Substitution reveals a new model parameter and a PDE w.r.t. vdei
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Temperature dependence: final result
Integrals can be performed w.r.t. the built in voltages yielding
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Neither the E nor the C terms agree. Inserting an additional segment in 

the undepleted base region, Qp0 should change but its temperature 
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The generic approach yields with 1== CE mm
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Temperature dependence: heterobandgap

Temperature variation of the quiescent hole charge:

Approximately 7mV bandgap reduction can be achieved in Si by adding 1% 

Ge contaminant. A typical Ge ramp of 15% yields approximately                  

what is small to Neff(x) allowing a separation
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Temperature dependence: heterobandgap, cont.’d
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Temperature dependence: illustration

Net QpT_low resides in black frames (QjC was negligible this case)

Junction and BG related temperature variations are „orthogonal“
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Temperature dependence: low bias transit time and Qf0

Bandgap induced temperature variation affects the low bias transit time as 

well. With approximation for large drift factors

The effective drift factor at a linear Ge ramp reads
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Temperature dependence: weight of E minority charge
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Temperature dependence: weight of C minority charge

thcs(T) can only partially absorb 

the bandgap feature effects

modified thcs(T) would allow 

leaving htc constant 

Either hfc should be scaled as shown or the temperature dependence 

of thcs should be modified (preferred). Needs more experiment or 

TCAD to decide: no modification in this framework.
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Temperature dependence: base resistance
The quiescent part of the stored minority charge with typically 00 <DQrf

The conductivity modulation is to be re-written by the total AC junction 

related charges referenced to the quiescent depletion boundaries [5]

Refines temperature dependence. rbi is overaddressed in the model: 

change is justified only along with other due updates

Tetrode structures are not able to detect the bandgap related 

temperature variation of Qp0
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Model implementation: HICUM/L2v2.24G

The bandgap shrink in the reference point has been tacitly merged in vgb

since the introduction of the model thus c10 will be kept as it is.
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side has been left AC linked. No other changes than indicated.
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HICUM/L2v2.24G: alternative IS parameter
This model formulation allows for “pseudo-normalization” by specifying is#0

which case c10=is*qp0 is internally computed by the code.

The correlation nightmare among c10, qp0, hjei, hjci existing in the 

stdandard Hicum/L2 formulations at low bias has been removed, 

making the model uniquely extractable for these parameters
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QfT vanishes at low currents implying Qp0 to cancel out. Extraction of or 

importing is, hjei and hjci becomes a straightforward procedure. This will be 

essential for bandgap features parameter extraction.
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HICUM/L2v2.24G: pseudo-normalization

Vbe<= 0.7 interval is invariant to range of order qp0 variations. qp0 is a 

medium-current parameter: its extraction by low bias methods like 

using tetrode structures might be error prone
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Additional model parameters, HICUM/L2v2.24G

MA[0:1]0saturation current (alternative to c10)is9

--[0:Inf)10
ratio maximum to zero bias value of the B-E MRG 

charge voltage gradientajedc8

-V(0:10]0.9built in potential of the emitter MRG chargevdedc7

--[0:1)0.9grading factor of the emitter MRG chargezedc6

--[-10:10]0bandgap parameter of the collector MRG chargezetagc5

--[-10:10]0bandgap parameter of the emitter MRG chargezetage4

--[-10:10]0bandgap parameter of the quiescent hole chargezetag03

--[0:Inf)0
coefficient of the zero bias collector MRG charge 

temperature variationdeltc2

--[0:Inf)0
coefficient of the zero bias emitter MRG charge 

temperature variationdelte1

factorunitrangedefaultdescriptionnameno
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Model implementation, HICUM/L0v1.2G
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This looks fairly complicated: normalization smears the bandgap effects all 

over the model. Theoretical advantage of the provident omission of 

normalization in HICUM/L2 is evident.
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Additional model parameters, HICUM/L0v1.2G

MA[0:1]0
roll-off current of the emitter charge component, 

0 is Inf (replaces tfh by iqfe=iqfh/tfh)iqfe

MA[0:1]0specific BC barrier recombination currentibhrec5

--[-10:10]0
bandgap parameter of the forward Early 

coefficientzetavef4

--[-10:10]0
bandgap parameter of the reverse Early 

coefficientzetaver3

--[0:Inf)0
coefficient of the zero bias collector MRG charge 

temperature variationdeltc2

--[0:Inf)0
coefficient of the zero bias emitter MRG charge 

temperature variationdelte1

factorunitrangedefaultdescriptionnameno
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Summary

• a principal low bias charge expression has been derived relying 

on the widely accepted depletion approximation 

• the AC linked approach has been shown to be only an option 

with the risk of implying model misfit at advanced SiGe devices

• a generic approach has been suggested for the MRG charges

• novel quiescent low bias charge concept and consistent 

bandgap feature temperature model have been proposed

• model was implemented in MATLAB and benchmarked to the 

modified VA codes Hicum/L2v2.24G and Hicum/L0v1.2G 
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