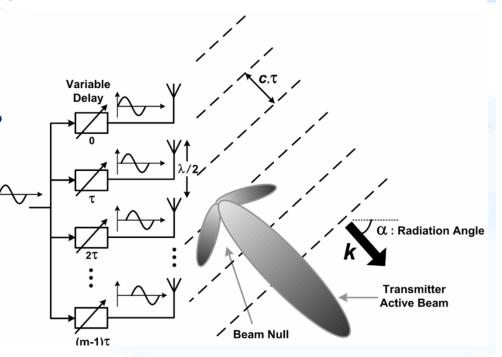


Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

mm-Wave systems

- Unlicensed spectrum 7 GHz bandwidth available at 60 GHz
- Short range communication specific attenuation characteristics 10-15 dB/km
- Highly advanced Silicon integrated circuit technology
- Reduced antenna size phased arrays



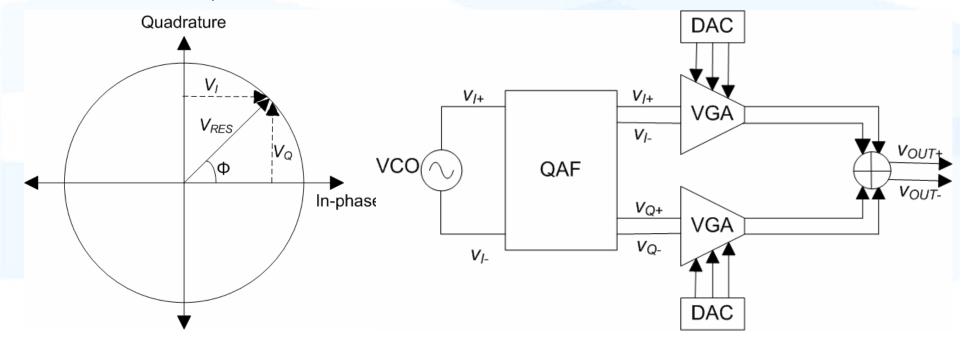
Phased arrays

Number of antenna elements

Narrow-band systems
 Phase control range = 360°
 Phase resolution = 22.5°

Phase shift @ RF, IF or LO

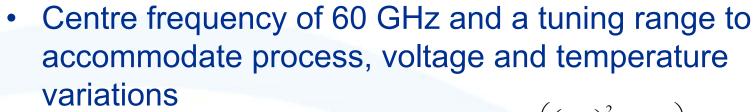
Phased array transmitter [1]



Integrated phase shifter

Vector sum phase shifting method

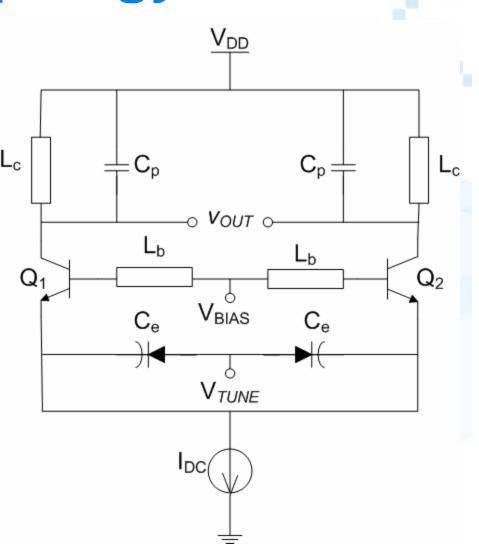
- Practically demonstrated at 5 GHz [1] $V_{RES} = \sqrt{{V_{\rm I}}^2 + {V_{\rm Q}}^2}$


$$V_{\mathsf{RES}} = \sqrt{{\mathrm{V_{I}}}^2 + {\mathrm{V_{Q}}}^2}$$

Block diagram

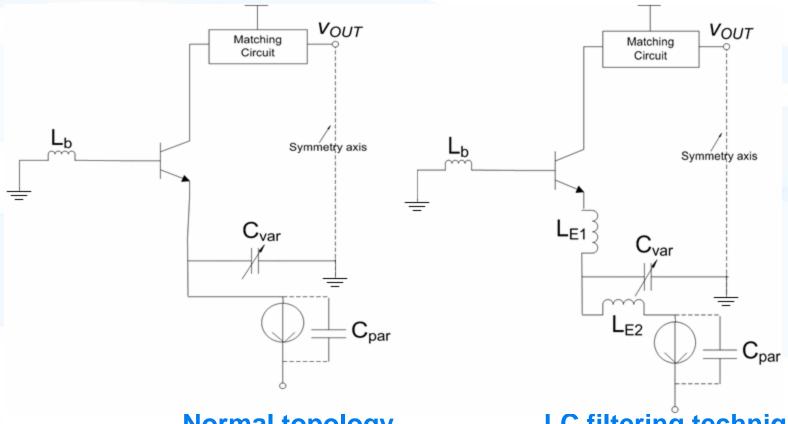
VCO

• Figure of merit
$$FOM = -L(f_c, \Delta f) + 10.\log\left(\left(\frac{f_c}{\Delta f}\right)^2 \frac{1 \text{mW}}{P_{DC}}\right)$$
• Phase noise
$$L(\Delta \omega) = 10.\log\left[\frac{P_{sideband}(\omega_0 + \Delta \omega, 1 \text{Hz})}{P_{carrier}}\right]$$


$$L(\Delta\omega) = 10.\log \left[\frac{P_{sideband} (\omega_0 + \Delta\omega, 1 \text{Hz})}{P_{carrier}} \right]$$

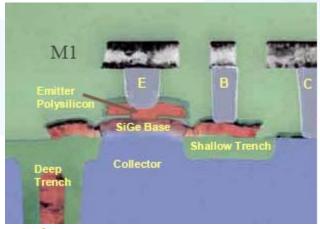
- Phase noise improvement
 - Circuit techniques
 - LC oscillators lowest phase noise
 - Fully differential configuration
 - LC filtering technique
 - Device technology

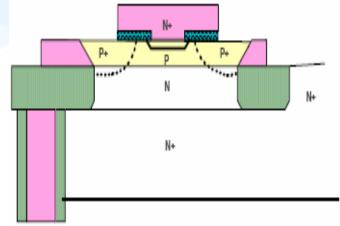
VCO - Basic topology

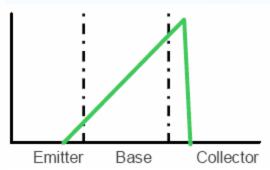

- Q_{tank} dependant on Q_{varactor}
 - MOS varactors are preferred
 - Accumulation mode varactors
- Transmission lines as L

Improving the phase noise

 LC filtering technique – improves phase noise and tuning range [2]

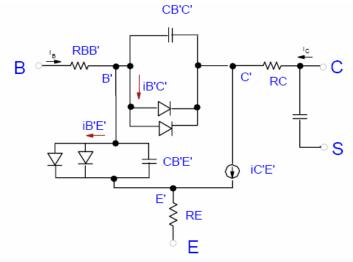





SiGe BiCMOS technology

- Low 1/f noise
- Graded Ge content in base
 - Reduces base transmit time, τ_b
 - Increases unity gain frequency, f_t

$$\frac{1}{2\pi f_t} \sim \frac{kT}{qI_c} \left(C_{Je} + C_{Jc}\right) + \tau_b + \tau_e + \tau_c + \left(R_e + R_c\right)C_{Jc} + R_{ns}C_{SUB}$$


Ge content in base

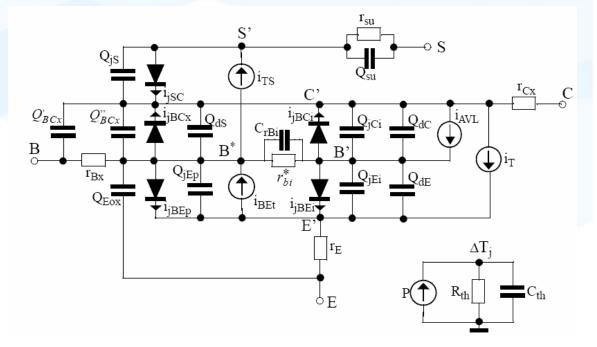
IBM SiGe structure

Need for transistor models

- SGPM inaccurate for SiGe transistors at high frequencies
 - Charge storage effects
 - Internal base resistance
 - Self-heating
 - Base-Collector avalanche effect

SGPM equivalent circuit

- Advanced models (MEXTRAM, VBIC, HICUM/L2)
 - Complicated EC, model equations, parameter extraction and computational effort



Parameters for VCO design

Distributed character of BC capacitance and base resistance


Operation in low breakdown voltage of SiGe requires BC

avalanche effect

HICUM/LO

- Combines simplicity of SGPM and several important features of HICUM/L2 [3]
- Physics-based and accurate than SGPM
- $i_{\scriptscriptstyle AVI}$: BC Avalanche effect
- $C_{BE_{par}}, C_{BC_{par}}$: Parasitics due to fringing fields in isolation regions
- Self heating network

HICUM/L0 - Features

- Decoupling of DC and AC behaviour
 Parameter extraction easier
- •Accurate modelling of τ_b
- •DC characteristics transfer current includes weighted charge components for HBTs
- •Bias dependant base resistance, r_B
- Self-heating

Advantages of HICUM/L0

- Circuit design oriented
- Computationally efficient and fast
- HICUM/L0 does not include
 - BE tunnelling current
 - Substrate coupling network
 - Parasitic substrate transistor
 - Capacitance for modelling AC emitter current crowding

Conclusion

- LC filtering technique to improve the phase noise of the VCO
- Investigate the current scaled DACs effectiveness to compensate for the amplitude mismatch introduced by QAF
- •HICUM/L0 should be incorporated to improve accuracy of the simulation results

References

- [1] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan and A. Komijani, "Integrated Phased Array Systems in Silicon," *Proc. IEEE, vol. 93, no. 9, pp. 1637–1655, Sept 2005.*
- [2] T. A. K. Opperman and S. Sinha, "A 5 GHz BiCMOS I/Q VCO with 360° variable phase outputs using the vector sum method," *Proc. IEEE PIMRC 2008 Symp.*, Cannes, pp. 1–5, 15-18 Sept., 2008.
- [3] H. Li and H. M. Rein, "Millimeter-Wave VCOs With Wide Tuning Range and Low Phase Noise, Fully Integrated in a SiGe Bipolar Production Technology," *IEEE J. Solid-State Circuits*, vol. 38, no. 2, pp. 184–191, Feb 2003.
- [4] M. Schröter. (2005) "HICUM, a scalable physics-based compact bipolar transistor model," User's Manual HICUM/Level2. [Online]. Available: http://www.iee.et.tu-dresden.de/iee/eb/eb_home.html
- [5] M. Schröter, S. Lehmann, S. Fregonese and T. Zimmer, "A Computationally Efficient Physics-Based Compact Bipolar Transistor Model for Circuit Design Part I: Model Formulation," *IEEE Trans. Electron Devices*, vol. 53, no. 2, pp. 279–286, Feb 2006.

Feedback/Questions

Deepa George

Carl & Emily Fuchs Institute for Microelectronics

Dept.: Electrical, Electronic & Computer Engineering

University of Pretoria

Pretoria 0002

SOUTH AFRICA

E-mail: DeepaG@ieee.org

Acknowledgements

The authors would like to thank the Federal Ministry for Education and Research (BMBF), Germany and National Research Foundation (NRF), South Africa for sponsoring travel, subsistence and related costs towards "exchange" stay in Germany.