

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese Department of Electrical, Electronic & Computer Engineering Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha

Research framework

Previous narrowband 60 GHz LNA attempt

- Inductive emitter degeneration input matching
- 22 dB Gain (3 stages)
- 100 mW power consumption
- Limited simulation due to HIT-kit incompatibility with Mentor Graphics IC flow
 - No DRC was possible

Real-world applications

60 GHz LNA:

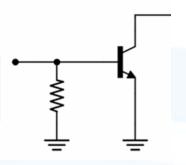
- High data rate short range wireless networks
- 'Cable free' home theatre systems

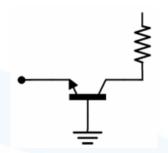
UWB & Ku-band LNAs:

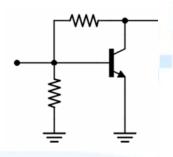
- Software radio type applications
- •1-18 GHz receiver with 800 MHz bands

Ku-band SiGe BiCMOS

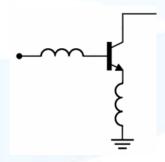
LNA

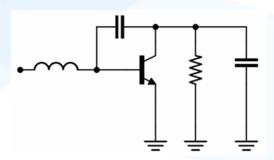

Bandwidth	1 – 18 GHz	
Gain	18 – 22 dB	
NF	< 4 dB	
P _{1dB}	-10 dBm	

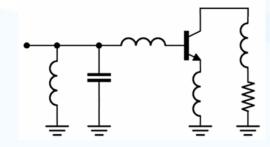

Parameter	IBM 8HP	IBM 7WL
β	600	140
f_T (peak)	200 GHz	60 GHz
r_b	20 Ω	20 Ω



Current matching techniques

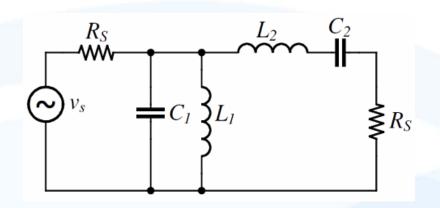


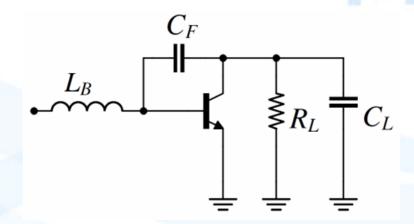



Resistive termination

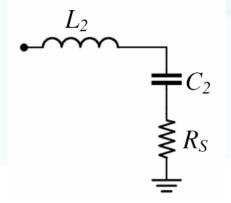
 $1/g_m$ termination

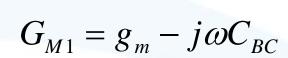
Resistive shunt-shunt feedback




Inductive degeneration Capacitive shunt-shunt feedback

LC-ladder and inductive degeneration

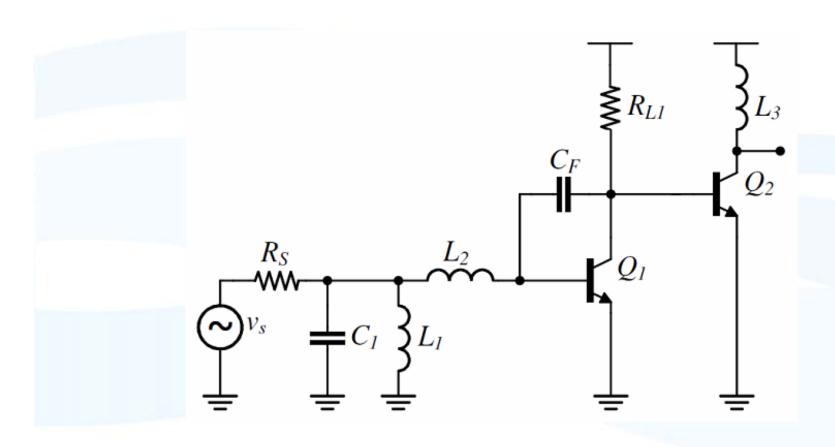

LC-ladder & capacitive feedback configuration


$$Z_{M} = \frac{1}{j\omega C_{F}(1+g_{m}R_{L})} + \underbrace{\frac{R_{L}}{1+g_{m}R_{L}}\left(1+\frac{C_{L}}{C_{F}}\right)}_{R_{M}} = \underbrace{\frac{1}{j\omega C_{F}(1+g_{m}R_{L})} + \underbrace{\frac{R_{L}}{1+g_{m}R_{L}}\left(1+\frac{C_{L}}{C_{F}}\right)}_{R_{M}}}_{= \frac{1}{2}}$$

$$C_2 = C_{\pi} + C_M \qquad R_S = R_M \left(\frac{C_M}{C_M + C_{\pi}} \right)^2$$

Gain

Stage


$$Z_{L1} = R_L \left\| \frac{1}{j\omega(C_{BC} + C_L)} = \frac{R_L}{1 + j\omega R_L(C_{BC} + C_L)} \right\|$$

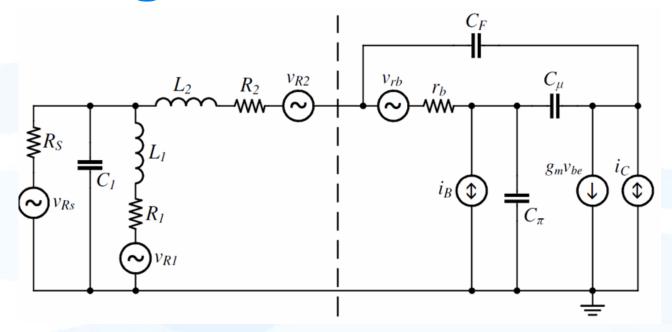
Stage
$$A_{v,2} = j\omega L_3 g_{m2}$$

2:

Proposed LNA schematic

Design equations

$$L_1 \approx \frac{R_S}{\omega_L}$$
 $C_2 \approx \frac{1}{\omega_L R_S}$
 $L_2 \approx \frac{R_S}{\omega_U}$ $C_1 \approx \frac{1}{\omega_U R_S}$


$$C_2 = C_{\pi} + (1 + g_m R_L)(C_{\mu} + C_F) \implies C_F = \frac{C_2 - C_{\pi 1}}{1 + A_{\nu 1}} - C_{\mu 1}$$

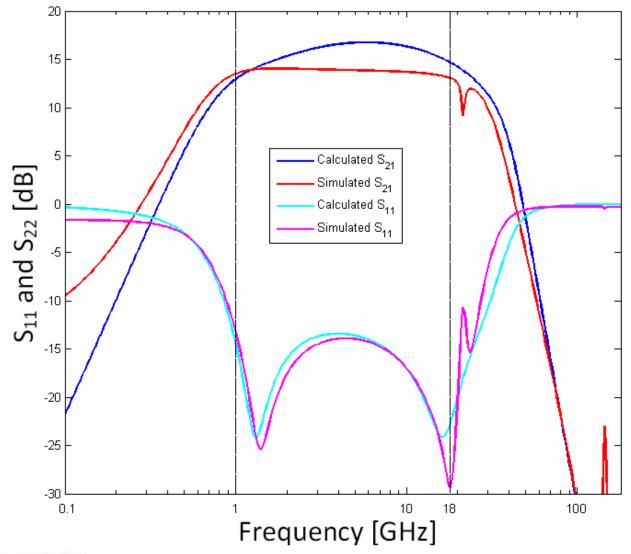
$$R_S \approx \frac{1}{g_m} \left(1 + \frac{C_L}{C_{BC}} \right)$$
 $\Rightarrow I_C \approx \left(1 + \frac{C_L}{C_{BC}} \right) \frac{V_T}{R_S}$

$$[g_m R_L >> 1 \text{ and } C_M >> C_\pi]$$

Noise figure

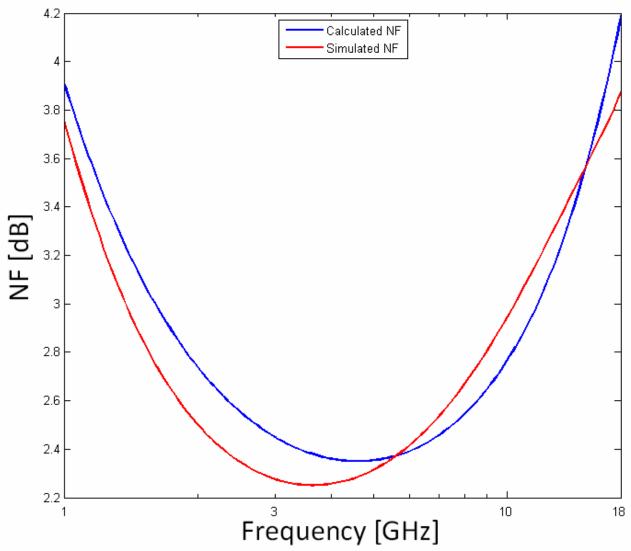
$$F_{1} = \frac{\overline{v_{\pi,veq}^{2} + \overline{v_{\pi,ieq}^{2} + \overline{v_{\pi,R1}^{2} + \overline{v_{\pi,R2}^{2} + \overline{v_{\pi,RS}^{2}}}}}{\overline{v_{\pi,RS}^{2}}}$$

$$= \left[\left(\frac{1}{\left| Z_{S} \right|^{2}} + \left| 1 + \frac{Z_{2}}{Z_{S}} \right|^{2} \cdot \left| \omega C_{F} \right|^{2} \right) \overline{v_{CE}^{2}} + \left| 1 + \frac{Z_{2}}{Z_{S}} \right|^{2} \overline{i_{CE}^{2}} + \frac{1}{\left| Z_{1} \right|^{2}} \overline{v_{R1}^{2}} + \frac{1}{\left| Z_{S} \right|^{2}} \overline{v_{R2}^{2}} + \frac{1}{R_{S}^{2}} \overline{v_{RS}^{2}} \right] \cdot \frac{R_{S}^{2}}{\overline{v_{RS}^{2}}}$$



Noise contributions vs.

frequency nest Equivalent noise voltage [V²/Hz] n_{RL2} n_{A2} 10 18 Frequency [GHz]



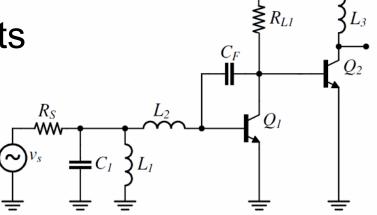
S₁₁ and gain results

Noise figure results

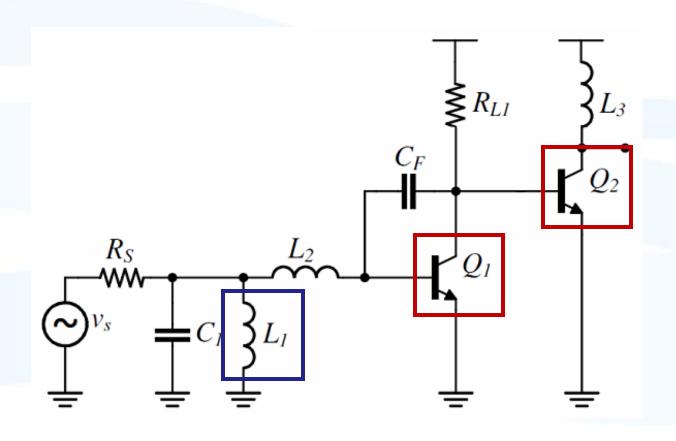
Design at 60 GHz

Design limitations:

- Input impedance approximation
- Transistor gain-bandwidth product

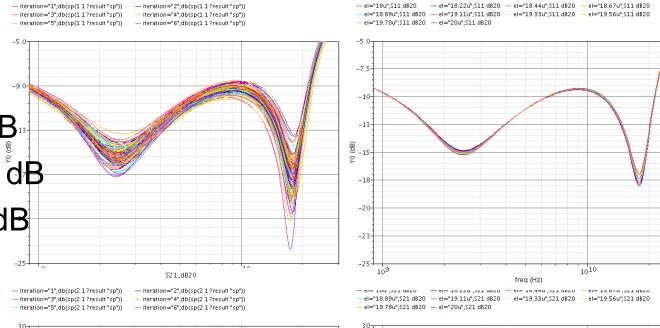

On-chip passive components

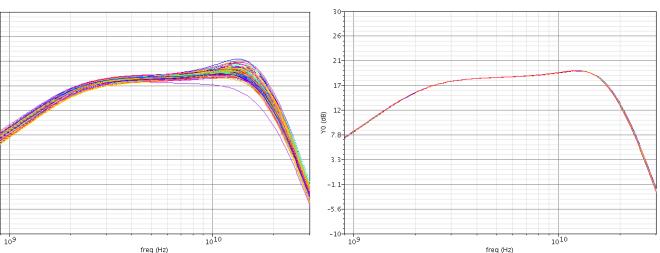
Performance tradeoffs:


- NF vs. Bandwidth
- Parasitic capacitance vs.

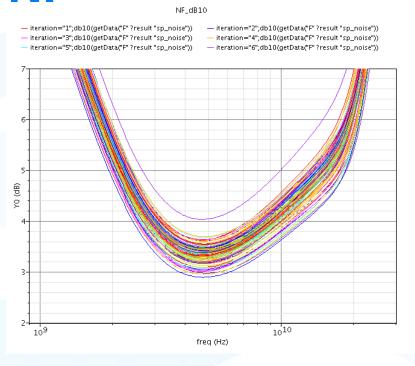
 ω_L

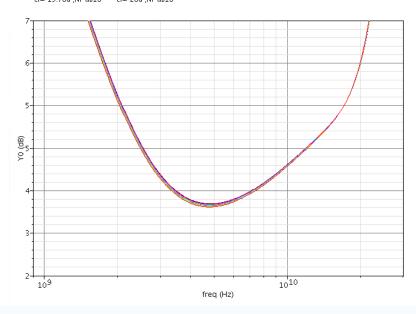
Monte Carlo Analysis Dominant Sensitive Components


Monte Carlo Analysis – S₁₁ &


S₂₁

 $\Delta S_{11@3GHz} \approx 3 \text{ dB}$ $\Delta S_{11@3GHz} \approx 1.8 \text{ dB}$ $\Delta S_{11@18GHz} \approx 7 \text{ dB}$


 $\Delta S_{21} \approx 1.2 \text{ dB}$ $\Delta S_{21peak} \approx 3 \text{ dB}$



Monte Carlo Analysis – NF

Expressions 3

el="18u";NF dB10
 el="18.22u";NF dB10
 el="18.44u";NF dB10
 el="18.64u";NF dB10
 el="19.13u";NF dB10
 el="19.33u";NF dB10
 el="19.56u";NF dB10
 el="19.78u";NF dB10

ΔNF ≈ 1 dB

Future work

During internship at TU-Dresden:

Simulate using HICUM models and compare with well documented theoretical and simulation results thus far.

References

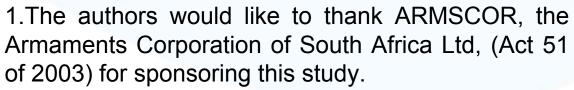
- [1] M. Weststrate and S. Sinha, "Analysis of a Low Noise Amplifier with LC-Ladder Matching and Capacitive Shunt-Shunt Feedback," *Proc. IEEE Africon* 2009, Nairobi, 23-25 September 2009.
- [2] C. Janse van Rensburg, "SiGe BiCMOS LNA for mm-wave applications", Master's degree dissertation, Dept.: Electrical, Electronic & Computer Eng., Nov. 2010, University of Pretoria, South Africa.
- [3] D. George, "SiGe based multiple-phase VCO operating for mm-wave frequencies", PhD thesis, Dept.: Electrical, Electronic & Computer Eng., Nov. 2010, University of Pretoria, South Africa.
- [4] A. H. Uys, "Design of a SiGe based 60 GHz low noise amplifier," BEng (Electronic Engineering) final year project report, Dept.: Electrical, Electronic & Computer Eng., November 2008, University of Pretoria, South Africa.
- [5] M. Weststrate and S. Sinha, "Mathematical Analysis of Input Matching Techniques for Application in Wide-band LNA Design," *Proc. of the South African Conference on Semi- and Superconductor Technology*, Stellenbosch, 8-9 April 2009, pp. 128 132.
- [6] M. Weststrate and S. Sinha, "Noise optimization of a wideband capacitive shunt-shunt feedback LNA design suitable for software-defined radio," Accepted for publication in the *Proc. of the IEEE International Conference on Electronics, Circuits and Systems* 2009, Hammamet, 13-16 December 2009.
- Capacitive Feedback LNA and Scaling to mm-Wave Frequencies," Proc. IEEE

Feedback/Questions

Marnus Weststrate

Carl & Emily Fuchs Institute for Microelectronics

Dept.: Electrical, Electronic & Computer Engineering


University of Pretoria

Pretoria 0002

SOUTH AFRICA

E-mail: MarnusW@ieee.org

Acknowledgements

2. The authors would like to thank the Federal Ministry for Education and Research (BMBF), **IRF** Germany and National Research Foundation (NRF), South Africa for sponsoring travel, subsistence and related costs towards "exchange" stay in Germany.

Federal Ministry

