Simple Emitter and Collector Scaling Approach with VBIC for Low-cost SiGe:C HBT’s

René F. Scholz *, B. Senapati*, A. Chakravorty #, D. Knoll *, C.K. Maiti #

* IHP, Frankfurt (Oder), Germany
IIT, Kharagpur, India

Bipolar Arbeitskreis
Unterpremstätten
October 23-24, 2003
Outline

• Technology and layout for scaling
• Test structures - general approach
• Scaling equations - implementation in IC-CAP
• Measurement setup
• Results
• Conclusion
SiGe:C Technology - HBT features

- 19 mask BiCMOS process
- Gate poly used for the external base
- CMP applied for separating the emitter from the external base
- 3 types of HBTs by different superpositions of the MOS n-well and isolation (SC) implants with the HBT collector well and SIC implants:

<table>
<thead>
<tr>
<th>HBT Type</th>
<th>BV_{CEO}</th>
<th>f_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV-HBT</td>
<td>4V</td>
<td>50GHz</td>
</tr>
<tr>
<td>LV-HBT</td>
<td>2.4V</td>
<td>75GHz</td>
</tr>
<tr>
<td>HV-HBT</td>
<td>>7V</td>
<td>30GHz</td>
</tr>
</tbody>
</table>

Layout for scaling

Scaling approach is demonstrated for the LV device

Design Kit:

3 values can be accessed in PCell

- Drawn emitter length ($L_{E_{\text{Drawn}}}$)

Number of emitters by

- No. of columns (N_x): 1 .. 8
- No. of rows (N_y): 1, 2

Scaling with emitter and collector area
Test-structures used for scaling

LE_{Drawn} scaling : 4
Nx, Ny scaling : 4
verification : 2
total : 9

Not optimum choice !!!
Scaling approach for model parameter

1. Determine parameters of basic transistor (PAR_B) including temperature behavior and $1/f$ noise

 Only one full parameter extraction and optimization!

2. Combining data from different geometries in one IC-CAP setup

3. Determine model parameter for scaled model (PAR_S) by optimization on curves from different geometries

Scaled model parameters (PAR_S) are function of basic parameters (PAR_B) and scaling factors ($\text{F}_{\text{PAR_SKF}}$)
Scaling equations

\[A_E = f(LE_{\text{Real}}), \quad P_E = f(LE_{\text{Real}}) \]
real emitter area and perimeter,

\[A_C = f(LE_{\text{Real}}, N_x, N_y), \quad P_C = f(LE_{\text{Real}}, N_x, N_y) \]
real collector area and perimeter

\[A_C = L_x \cdot N_x \cdot L_y \cdot N_y \]

\[P_C = 2(L_x \cdot N_x + L_y \cdot N_y) \]

\[L_y = f(LE_{\text{Real}}) \quad L_x = \text{const} \]

Values are normalized to the base device

For the base device: \(CJE_S = CJE_B \)
Scaling with emitter area/perimeter

\[CJ_E_S = CJ_{E_B} \left((1 - F_{CBE(SKF)} A_E + F_{CBE(SKF)} P_E \right) \] \nx \nx

Similar: CJC, IS, IKF, IBEI, IBEN, RE, RBI, RCI

CJEP (base area)

\[F_{CBE(SKF)} = 0.2 \text{ fit in this example} \]

\[ITF = f(A_E) \]

i.e. no scaling factor

same for other currents
Collector scaling and fitting

2. Scaling with collector area

\[CJCP_S = CJCP_B \left((1 - F_{CJCP_{SKF}})A_C + F_{CJCP_{SKF}} P_C \right) \]

Similar: RCX, IBEIP, IBENP, RS

3. Scaling with fitting factor

\[RTH_S = \frac{RTH_B}{\sqrt{A_E}} \frac{1}{(N_x \cdot N_y)^{RTH_{SKF}}} \quad 0.5 < RTH_{SKF} < 1 \]

Similar: AVC2, RBX (2)

Total 18 scaling factors
Measurement setup

Single setup for DC and RF measurements

- DC-measurements (4142B) Kelvin probes
- CV measurements (4284A)
- RF measurements (PNA E8364A) 45 MHz - 50 GHz
- Temperature range: -55 °C - 200 °C
Results: 5 devices are plotted

![Graph showing emitter and collector lengths for various transistors.](image-url)
Results: CV Scaling

Base-Collector capacitance

Collector-Substrate capacitance

- $F_{_{\text{CBC SKF}}} \text{ and } F_{_{\text{CJEP SKF}}}$
- $F_{_{\text{CJCP SKF}}}$
Results: DC Scaling

In all figures curves from transistors with different geometries are plotted.

Gummel plot @ $V_{CB} = 0V$

Output characteristics @ $V_{BE} =$ const.

Contact Resistance $V_{BE} = 0.85 V$
Results: RF Scaling

- f_T extracted at 5GHz, VCE 1.5V
- f_{Max} extracted at 24GHz, VCE 1.5V
Conclusion

- Simple scaling approach implemented in IC-CAP
- Emitter length variation only over a limited range
- Special layout for multi emitter structures
- Test structures generated with Pcells
- We use only RF-Pads, no special test structures
- DC and RF model accuracy better than 10%