

Extraction Method for Thermal Resistance Bipolar-Arbeitskreis Heilbronn, Nov 2004

Wolfgang Kraus

wolfgang.kraus@hno.atmel.com

Atmel Germany

- Teststructures for temperature measurement
- Example
- Evaluation of recent RTH-extraction method
- Results
- Conclusions
- References

Temperature Measurement

Dependent on the extraction method used different requirements arise:

- DUT and separate sensor
 - some distance from DUT
 - usually requires calibration
 - example : diode
- DUT merged with sensor
 - requires special layout
 - and calibration
 - see example
- DUT as sensor
 - uses regular device
 - best choice

Figure 1: top view of experimental teststructure for temperatue measurement

Principle of teststructure for temperature measurement in SOI MOS-FET's after [1].

The gate is configured for four-point resistance measurement with calibration in off-state of the MOS.

During operation of the MOS this resistance serves as temperature sensor.

Figure 2: experimental results of SOI NMOS, w= $320 \mu m$

There are several extraction methods suitable for regular devices [2, 3, 4, 5]. Of particular interest is the method from [5], which allows the extraction of thermal resistance in dependence on ambient temperature.

Thermal conductivity changes with temperature ($\alpha \sim 1.5$):

$$\kappa(T) = \kappa_{ref} \left(\frac{T}{T_{ref}}\right)^{-\alpha} \tag{1}$$

Since thermal resistance is inversely proportional to the thermal conductivity, we should expect as claimed in [5]:

$$R_{TH}(T) = R_{TH,ref} \left(\frac{T}{T_{ref}}\right)^{\alpha} \tag{2}$$

Total temperature change caused by ambient and power dissipation [4]:

$$\Delta T = R_{TH}(I_C \Delta V_C + \Delta I_C V_C) + \Delta T_A \tag{3}$$

$$\Delta I_C = TC_F(I_C)I_C\Delta T + \frac{\Delta V_C}{V_A}I_C \tag{4}$$

Keeping V_C constant :

$$\Delta T|_{\Delta V_C = 0} = R_{TH} V_C \Delta I_C + \Delta T_A \tag{5}$$

$$=\frac{\Delta T_A}{1 - TC_F(I_C)R_{TH}I_CV_C} \tag{6}$$

Keeping T_A constant :

$$\Delta T|_{\Delta T_A=0} = R_{TH} (I_C \Delta V_C + \Delta I_C V_C \tag{7}$$

$$= \frac{I_C R_{TH} (1 + \frac{V_C}{V_A}) \Delta V_C}{1 - T C_F (I_C) R_{TH} I_C V_C}$$
 (8)

Variation of I_C :

$$\Delta I_C = \frac{\partial I_C}{\partial T} \Delta T \tag{9}$$

$$= TC_F(I_C)I_C\Delta T \tag{10}$$

$$= TC_F(I_C)I_C(\Delta T|_{\Delta V_C=0} + \Delta T|_{\Delta T_A=0})$$

$$\tag{11}$$

$$= \frac{TC_F(I_C)I_C}{1 - TC_F(I_C)R_{TH}I_CV_C} (\Delta T_A + I_C R_{TH}(1 + \frac{V_C}{V_A})\Delta V_C)$$
 (12)

Extraction of R_{TH} :

$$\frac{\frac{\Delta I_C}{\Delta V_C}|_{\Delta T_A=0}}{\frac{\Delta I_C}{\Delta T_A}|_{\Delta V_C=0}} = I_C R_{TH} (1 + \frac{V_C}{V_A}) \tag{13}$$

$$R_{TH} = \frac{I_C(V_C + \Delta V_C, T_A) - I_C(V_C - \Delta V_C, T_A)}{I_C(V_C, T_A + \Delta T_A) - I_C(V_C, T_A - \Delta T_A)} \frac{\Delta T_A}{\Delta V_C} \frac{1}{I_C(1 + \frac{V_C}{V_A})}$$
(14)

This is eq. 3 of [5] using I_C instead of I_B as sensored signal.

Measurement conditions:

- DUT : SiGe2_power npn, 4x 19.7 μm x 1.3 μm
- $V_C = 2V, \Delta V_C = 0.2V$
- $I_C \sim 1.5 mA$ at room temperature
- $\Delta T_A = 10^{\circ} C$
- change base drive with temperature to keep power disspation constant

Figure 3: extracted dependence of RTH on ambient temperature

Figure 4: output characteristics of HBT w/o. selfheating

Figure 5: output characteristics of HBT including selfheating

Conclusions

- Most recent method for R_TH extraction has been verified
- Thermal resistance depends on temperature
- Therefore selfheating (SH) becomes nonlinear
- Can be handled by Kirchhoff-Transformation [7]
- Models having SH should take that into account

References

- [1] L.T. Su et.al., T-ED, Jan. 1994
- [2] H. Tran et.al., BCTM, 1997
- [3] S.P. Marsh , *T-ED*, Feb. 2000
- [4] D.T. Zweidinger et.al., BCTM, 1995
- [5] J.C.T. Passchens et.al., BCTM, 2004
- [6] M. Reisch , Solid-State Electronics, pp. 677-679, 1992
- [7] K. Poulton et.al., JSSC, Oct 1992