HICUM/L0 - Extraction results and experience

M. Schroter1,2, S. Lehmann1, B. Ardouin3

1Chair for Electron Devices and Integrated Circuits, Univ. of Technology Dresden, Germany
2Dept. of Electrical and Computer Engin., University of California San Diego, USA
3XMOD Technologies, Bordeaux, France

http://www.iee.et.tu-dresden.de/iee/eb/eb_homee.html

Bipolar Arbeitskreis
Reutlingen, October 2005
OUTLINE

• Introduction
• Temperature dependent model formulation
• High-current correction
• More experimental results
• Summary
Introduction

HICUM / Level0 - status overview

• Version 1.1
 • improved Verilog implementation
 • based on Level2 coding experience
 • equation extensions: avalanche current, rBi, self-heating, limitation for diode currents
 • simulator implementation via model compilers
 • Level0 (due to its simplicity) was initially used to set up model compilers (ADMS, Tiburon)
 • excellent help from Cadence to obtain consistent version at both sites

• Documentation
 • see new web-site
 • not as complete yet as for Level2 (lack of time, financial support)
 • see IEEE TED

• Evaluations for a variety of process technologies
 • Atmel, Infineon, Jazz, ST, ...

 This presentation: additional results
Temperature dependent model formulation

Self-heating

• simple single-pole network with thermal resistance and capacitance

• externally accessible thermal node

\[\Delta T = P_{th} R_{th} \]

\[P_{th} = |i_T V_{C'E'}| + |i_{Avl} V_{C'B'}| \]

more terms?

=> still being debated
Bandgap

\[V_g(T) = V_g(T_0) + k_1 \frac{T}{T_0} \ln \left(\frac{T}{T_0} \right) + k_2 \left(\frac{T}{T_0} - 1 \right) \quad , \quad T_0 = \text{reference temperature} \]
Depletion Capacitances: built-in voltage

\[V_D(T) = V_{Dj}(T) + 2V_T \ln \left(\frac{1 + \sqrt[4]{1 + 4 \exp \left(-\frac{V_{Dj}(T)}{V_T} \right)}}{2} \right) \]
Depletion Capacitances: built-in voltage

\[
V_{Dj}(T) = V_{Dj}(T_0) \left(\frac{T}{T_0} \right) - V_{g(X,Y)}(0) \left(\frac{T}{T_0} - 1 \right) - m_g V_T \ln \left(\frac{T}{T_0} \right)
\]

with \(V_{Dj}(T_0) = 2V_T \ln \left[\exp \left(\frac{V_D(T_0)}{2V_T} \right) - \exp \left(- \frac{V_D(T_0)}{2V_T} \right) \right] \)

thermal voltage at reference temperature: \(V_{T0} = \frac{kT_0}{q} \)

coefficient from T dependent bandgap: \(m_g = 3 - \frac{qF_{1VG}}{k_B} \)

average junction bandgap voltage: \(V_{g(X,Y)} = \frac{V_{gX_{eff}} + V_{gY_{eff}}}{2} \)

\((X,Y) = \{ \text{BE, BC, SC} \} \)
Depletion Capacitances

max. capacitance ratio $a_j(T)$

zero bias capacitance $C_{j0}(T)$

\[a_j(T) = a_j(T_0) \left(\frac{V_D(T)}{V_D(T_0)} \right) \]

\[C_{j0}(T) = C_{j0}(T_0) \left(\frac{V_D(T_0)}{V_D(T)} \right)^z \]
Saturation currents

- Transfer current

\[
I_{S}^{*}(T) = I_{S}(T_{0}) \left(\frac{T}{T_{0}}\right)^{\zeta_{CT}} \exp\left[\frac{V_{gB}}{V_{T}(T)}\left(\frac{T}{T_{0}} - 1\right)\right]
\]

- Diodes

\[
I_{XXS}(T) = I_{XXS}(T_{0}) \left(\frac{T}{T_{0}}\right)^{\zeta_{XXT}} \exp\left[\frac{V_{gXX}(0)}{V_{T}(T)}\left(\frac{T}{T_{0}} - 1\right)\right]
\]

with BC current exponential factor \(\zeta_{BCT} = m_{g} + 1 - \zeta_{Ci}\) and substrate current exponential factor \(\zeta_{SCT} = m_{g} + 1 - m_{\mu pS}\), assuming \(m_{\mu pS} = 2.5\).
Saturation currents

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{BE}</td>
<td>I_{RES}</td>
</tr>
<tr>
<td>I_{RE}</td>
<td>I_{RES}</td>
</tr>
<tr>
<td>I_{BC}</td>
<td>I_{BCS}</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>I_{SCS}</td>
</tr>
<tr>
<td>V_{gXX}</td>
<td>V_{gEeff}</td>
</tr>
<tr>
<td>V_{gBE}</td>
<td>calculated</td>
</tr>
<tr>
<td>V_{gCEff}</td>
<td>1.114</td>
</tr>
<tr>
<td>V_{gSEff}</td>
<td>1.15</td>
</tr>
<tr>
<td>ζ_{XXT}</td>
<td>2.97</td>
</tr>
<tr>
<td>ζ_{BET}</td>
<td>calculated</td>
</tr>
<tr>
<td>ζ_{BCT}</td>
<td>calculated</td>
</tr>
<tr>
<td>ζ_{SCT}</td>
<td>calculated</td>
</tr>
</tbody>
</table>
Series resistances

- same formulation for all series resistances:

\[r(T) = r(T_0) \left(\frac{T}{T_0} \right)^{\zeta_r}, \quad \zeta_r = \text{temperature coefficient} \]
High-current correction

\[i_{Tf} = \frac{i_{Tfl}}{\Delta q_{fh} \left(1 + \frac{q_{p,T}}{q_{p,T}} \right)} \]

with

\[i_{Tfl} = \frac{i_{Tfi}}{q_{p,T}} \]

and

\[i_{Tfi} = I_S \exp \left(\frac{V_{BE}}{m_C f V_T} \right) \]

\[V_{CE}=2.0V, \quad R_{th}=0W/K, \quad I_{Qfh}=1e^{-2}, \quad t_{th}=1e^{-4} \]
Correction charge Δq_{fh}
comparison with normalized hole charge

$$\Delta q_{fh} = \left(w_{low}^2 + t_{fh} \frac{i_{Qfh}}{I_{CK}} \right) \frac{i_{Tfl}}{I_{Qfh}} \approx \frac{\int_{0}^{Tf} \tau_f dI}{\tau_{f0} I_{Tf}} - 1 \quad \text{with} \quad w_{low} = \frac{w_{i} i_{Tfl}}{w_{C}} = \frac{i_l + \sqrt{i_l^2 + a_{hc}}}{1 + \sqrt{1 + a_{hc}}}$$

$R_{th} = 0 \text{W/K}, I_{Qfh} = 1 \times 10^{-2}, t_{fh} = 1 \times 10^{-4}$

$i_l = 1 - \frac{I_{CK}}{i_{Tfl}}$

V_{BE} [V]

$V_{CE} = 1.0 \text{V}$

$V_{CE} = 1.5 \text{V}$

$V_{CE} = 2.0 \text{V}$
More experimental results

0.18\mu m foundry BiCMOS process

data comparison: measurement (symbols), model (lines)

\(V_{CE/V} = 0.3, 0.5, 1, 2, 3 \)
Forward Gummel characteristics

data comparison: measurement (symbols), model (lines)
Forward output characteristics

(0.2*10, 111)
Forward output characteristics

$V_{BE} = (0.65...1)V$, $\Delta V = 0.05V$
Frequency dependence

S-parameter comparison: measurement (symbols), model (lines)

real(S_{11}) vs. freq

imag(S_{11}) vs. freq
Frequency dependence

S-parameter comparison: measurement (symbols), model (lines)
Frequency dependence

S-parameter comparison: measurement (symbols), model (lines)

real(S_{12})

imag(S_{12})
Frequency dependence

S-parameter comparison: measurement (symbols), model (lines)
Summary

• overview on temperature dependent formulation
 => available model parameters, feeling for the characteristics

• comparison with latest data of state-of-the-art 0.18\textmu m BiCMOS process
 => good agreement of all standard device characteristics
 (within the expected validity range of the model)

• apparently high interest in Level0 model
 => implemented already in various commercial simulators
 (see EDA vendors web-sites for present status)

• 2-part IEEE TED paper accepted
 • model background and equations
 • parameter extraction procedure (single geometry)
 • comparison to experimental results with from different technologies
HICUM Workshop

• 2006
 • location: Heilbronn
 • proposed date: June 12 (Mo) & 13 or 13 & 14

• future plans/options
 • moving across continents (Europe, US, Asia)
 • still once a year
 • attach to a conference?
 • US: MTT/RFIC in June, ICMTS in?
 • Europe: ?
 • Asia: ?
 • steering committee?
 • other ideas?