HBT’s thermal impedance measurement

T. Zimmer ♣, P. Baureis ♠, H. Beckrich ♦ ♠, P.Y. Sulima ♠

♣ University Bordeaux 1, F
♠ FH Würzburg, D
♦ ST Microelelectronics, Crolles, F
Motivation

- Bipolar compact model (e.g. VBIC)
Do we really need C_{TH}?

Harmonic balance simulation:
HICUM with ADS
RF power transistor
Power gain as a function of input power at 2GHz

VBE=0.83V, VCE=3.5V

- Power gain (dB) @ 2GHz
- P_{out}/P_{in} (2GHz - $C_{th} = 3\text{nJ/K}$)
- P_{out}/P_{in} (2GHz - $C_{th} = 1\text{e-30 J/K}$)
We do really need C_{TH}.

- But, how to get it?
Outline

• Motivation: done

• Presentation of two methods for:
 – Z_{TH} measurement
 – C_{TH} extraction
 – Z_{TH} modelling

• Scaling issues

• Questions
Z_{TH} measurement

1. Load Pull measurement

2. Small Signal measurement
 - frequency range
 - NWA
 - Z-parameters

3. Pulsed measurement
Load Pull measurement

• Measurement equipment
• De-embedding and calibration
• Indirect extraction
 – First, full compact model parameter extraction
 – Second, C_{TH} fitting
 – Third, C_{TH} is in general not very sensitive

• => For instance, not the best choice
Small Signal measurement

• Frequency range: first order guess
 – Standard transistor:
 • Deep trench isolation
 • $0.25 \mu m \times 12.8 \mu m$
 • $R_{TH} = 1000 \text{ K/W}$
 • $C_{TH} = 0.5 \text{ nJ/K}$
 • $f_{TH} = 1/(2\pi R_{TH} C_{TH}) \approx 300 \text{ kHz}$
 – Out of the range of standard NWA
Measurement setup: AC

• Base: I_B constant
• Collector: $V_{DC} + V_{AC}$
• I_C through R_C
• $Z_{CE} = V_C/I_C$ (complex)
• frequency range
 – Theory: $0 \rightarrow \infty$
 – 0.1Hz$\rightarrow 10$ MHz
Measurement results: AC

- Real Part of Z_{CE}
Modelling: AC

• Hicum compact model: R_{TH}
 – Real part of Z_{CE} at low frequencies
Modelling: AC

- Hicum compact model: C_{TH}
 - Phase of Z_{CE}
Measurement setup: pulse

- Base: I_B constant
- Collector: $V_{CE1} \rightarrow V_{CE2}$
- Measure V_B
- Calibration $V_B \rightarrow T$
- Time range
 - Theory: $0 \rightarrow \infty$
 - 10ns → 10s
Measurement results: pulse

- $V_{BE}(t) \rightarrow T(t)$
Modelling: pulse

- $R_{TH} - C_{TH}$ cell:
 - \text{lin}
 - \text{log}
Modelling pulse: recursive network

- Recursive network
Recursive network: toolkit & results
Scaling issues
Why does the dynamic behaviour change for small devices?
Measurement problem

- Small transistors, small I_B, high Z_{in}
- New current source: new dynamic behaviour !!!

• Solution : ?
Discussion

- Pulse and AC method for C_{TH} determination
 - Both methods give similar results
 - Both methods need similar equipment
 - AC: a full parameter extraction has to be performed for R_{TH} and C_{TH} determination
 - Pulse: R_{TH} and C_{TH} can be directly determined, but a V_{BE}-T calibration is necessary

- Recursive network for accurate modelling
- Limits for small transistors
• Thanks for your attention