CMC Meeting

HICUM - Productization and Support Update

Michael Schroter, Anjan Chakravorty, Anindya Mukherjee

Dept. of Electrical and Computer Engin. University of California at San Diego USA

CEDIC University of Technology Dresden Germany

Dept. of Electrical Engineering

Indian Institute of Technology Madras India

mschroter@ieee.org, anjan@iitm.ac.in, mukherje@iee.et.tu-dresden.de

Boston, MA (USA) Oct, 2007
OUTLINE

• HICUM/L2 Support Activities

• HICUM/L0 Support Activities

• Vertical NQS Effects and Implementation
HICUM/L2 Support Activities

fixes and improvements towards v2.23

• testing (changes see previous meeting slides and doc on www):
 • y-parameters (internal transistor) vs. analytical expressions match well with VA Code
 • ST’s comparison of simulator performance see HICUM WS website => EDA relevant

• Possible to link convergence criterion of I₁ iteration in VA code to simulator current
tol criterion? (same for GMIN and other parameters)
 • example: reltol = $simparam("reltol",1e-6) as suggested by Laurent does not work with OUR
 Spectre version => need latest simulator versions for support work

• Requests from design houses (using a foundry) regarding model characteristics cannot
be handled without model parameters
 issue: foundry contract prevents design houses from providing parameters

• NQS effects:
 • Bessel polynomial in frequency domain to be implemented with ddt operator due to bias
dependence of τ₁ and τ₂ => see more details later
 • Note: this type of "delay" behavior is common to other devices, too!
 => solution will be of general benefit
 • VA implementation does not converge in Spectre for NQS with RBX=RCX=0 Ohm - cause?
HICUM/L0 Support Activities

Version 1.12

Current L0 version (released March 9, ’07) has been available at
(http://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_start.html)

• Detailed documentation for HicumL0V1.12 has been released
 • format similar to L2
 • first complete doc for L0 latest version
 • includes complete parameter list, OP list

• Parameter TFH (for high injection correction) has been allowed to take the value 0

• Parameter DT0H (base width modulation) does not have a range limitation anymore;
 i.e. negative values are also allowed
HICUM/L0 Support Activities

=> Version 1.13

Work in response to user requests

• High current region: negative slope in IC(VBE) has been observed (see HICUM WS 2007) for non-physical values of parameter IQFH (in relation to IQF) => high-current correction formulation needs to be investigated

• Improve temperature dependent behavior of IC(VBE) slope (see HICUM WS 2007) caused by T independent emission factor MCf

 => partially development work

 => manpower limited
Vertical NQS Effects and Implementation

- HICUM/L2 v2.1 and lower: implementation via Weil’s approach
- v2.2: attempt to use VA and model compiler
 => implementation via adjunct LCR-type Network (or equivalent network approach)

\[(i_{qs}, q_{qs}) \]
\[\frac{d^2 x_{nqs}}{dt^2} + A_1 \frac{dx_{nqs}}{dt} + x_{nqs} = x_{qs}(t) \] \hspace{1cm} (A_1, A_2 generally bias dep.)

time domain:

frequency domain: compiler creates derivatives due to bias dependent \(\tau_f \)

=> additional elements and disagreement with device simulation (and with theory and previous model versions)

Are VA compiler generated derivatives physically correct?
Example: SiGe HBT delay times

1D device simulation results (peak $f_T = 110$GHz)

- Delay times ($f = 40$) 24-Sep-2007
- NQS ratios ($f = 40$GHz) 24-Sep-2007

τ_{Qf}, τ_{IT}

$\Delta \tau_{IT}$, $\Delta \tau_{Qf}$

$\Delta \tau = \frac{\Delta \tau_{IT}}{\tau_{f}}$

\Rightarrow "delay" times are bias dependent
Device physics and compact model

Time domain solution (e.g., via TICCR)

• 1D diffusion transistor: \(i_{T,nqs}(t) = i_{T,qs}(t) - \alpha \frac{\partial Q_{mB}^{qs}}{\partial t} + \tau \frac{\partial^2 Q_{mB}^{qs}}{\partial t^2} \) (from theory)

 => to be realized in large-signal model (TR simulation)

• at any point in time (bias) during TR simulation:
 => use time "constants" at given time /bias point (or within discrete time interval)

• in the limit of infinitesimally small signals in time domain:
 use time \textit{constant} given by DC bias point

 => transformation to frequency domain contains no derivative of \(\tau \)

• Note: NQS effects are not naturally included in SPICE-like approach
 => higher order terms (e.g. \(\omega^2 \)) require special coding, adjunct networks, etc.

• need implementation that satisfies theory and experimental data:
 => Weil's approach is suitable and has provided accurate results so far
Example: SiGe HBT time domain (TR) analysis

- 1D device simulation at 2.5*I_C(peak f_T): 80GHz with 2.5mV amplitude (small-signal)

- MATLAB model: i_T(t) from discretized solution of \[A_2 \frac{d^2 i_{nqs}}{dt^2} + A_1 \frac{di_{nqs}}{dt} + i_{nqs} = i_{qs}(t) \]

=) "Weil" approach yields accurate results
Device physics and compact model (2/2)

Frequency domain solution

• 1D drift/diffusion transistor: \(I_{T,\text{nqs}} \approx I_{T,\text{qs}} - (\omega \tau_2)^2 - j\omega \tau_1 \)

=> is valid at any bias point with \(\tau \) at given bias point

=> to be implemented in small-signal model (AC simulation)

• need implementation approach that meets above requirements (related to theory and model formulation):

 => Bessel polynomial is suitable and has provided accurate results so far

 => direct implementation in AC code instead of adjunct network
Example: SiGe HBT frequency domain (AC) analysis

- 1D device simulation at 2.5*IC(peak fT): 80GHz small-signal analysis
- MATLAB model: $I_{T}(\omega)$ from analytical equations and Regional Approach (for C, G)

\Rightarrow delay time at given bias point yields accurate results
Example: SiGe HBT large-signal time domain (TR) analysis

• 1D device simulation: pulse (100GHz slope) with 100mV amplitude

• MATLAB model: \(i_T(t) \) from

\[
A_2 \frac{d^2 i_{nqs}}{dt^2} + A_1 \frac{d i_{nqs}}{dt} + i_{nqs} = i_{qs}(t) \Rightarrow i_C(t) = i_{T,NQS} - \frac{d Q_{jC}}{dt}
\]

\[
\frac{A_2}{2} \frac{d^2 i_{nqs}}{dt^2} + A_1 \frac{d i_{nqs}}{dt} + i_{nqs} = i_{qs}(t) \Rightarrow i_C(t) = i_{T,NQS} - \frac{d Q_{jC}}{dt}
\]

=> "Weil" approach yields accurate large-signal results
VA adjunct network implementation

- Gyrator equivalent of adjunct LCR-type network

\[
\begin{align*}
\text{i}_{T,qs} & \quad \text{C}_1 \quad \text{v}_{C1} \\
\text{v}_{C2} & \quad \text{C}_2 \quad \text{R} \\
\text{v}_{R} & \quad \text{i}_{T,nqs} = \frac{\text{v}_{R}}{\text{R}}
\end{align*}
\]

Coupled equations for traditional implementation with bias-independent \(\tau_f \)

\[
\text{i}_T, qs \frac{d}{dt}(\alpha IT^f \tau \text{v}_1 C_1) - \text{v}_2 C_2 = 0 \quad \text{and} \quad \text{v}_1 C_1 \frac{V_R}{R} \frac{d}{dt}(\alpha IT^f \tau \text{v}_2 C_2) = 0
\]

with \(R = 1 \), \(C_1 = \alpha_f \tau_f \) and \(C_2 = \alpha_f \tau_f / 3 \)

- Represents 2nd order polynomial in frequency and time domain
- Used in VBIC with bias-independent \(\tau_f \)
- For bias-dependent \(\tau_f \)

 \(\Rightarrow \) VA compiler generates undesired derivatives in small-signal EC
- Need an implementation that provides no undesired derivatives even with \(\tau_f(V,I) \)
VA adjunct network implementation (2/2)

- proposed implementation with modified expressions for network elements

 coupled equations for proposed implementation with bias-dependent τ_f

$$\frac{(i_T, qs - V_{C2})}{\tau_f} = \frac{d}{dt}(\alpha_{IT}V_{C1}) \quad \text{and} \quad \frac{V_{C1} - V_{C2}}{\tau_f} = \frac{d}{dt}\left(\frac{\alpha_{IT}}{3}V_{C2}\right)$$

- "C" elements become bias-independent \Rightarrow no undesired derivatives anymore

- seems to yield desired results
 - division by $\tau_f = 0$ avoided through turning off NQS effects when input of zero value
 - charge conservation issue should be of no consequence for actual model equivalent circuit
 - presently testing

- $i_T, qs/\tau_f$, V_{C1}, V_{C2}, $R=\tau_f$, $C1=\alpha_{IT}$, $C2=\alpha_{IT}/3$
Results of VA NQS effect implementation (1/3)

HICUM comparison: v2.1(Weil) vs v2.3 (adj. network)

Small-signal frequency-domain simulation: Y11

=> Excellent agreement
Results of VA NQS effect implementation (2/3)

HICUM comparison: v2.1 (Weil) vs v2.3 (adj. network)

Small-signal frequency-domain simulation: Y21

=> excellent agreement

=> "undesired derivative problem" seems to be solved
Results of VA NQS effect implementation (3/3)

HICUM comparison: v2.1 (Weil) vs v2.3 (adj. network)

Large-signal transient simulation (first results)

=> Agreement for QS (reference), but some deviations for NQS case
Conclusions

Weil’s approach and Bessel polynomial ...

- excellent approximations for device theory and circuit applications
- consistent representation in time and frequency domain
 - Note: inverse transformation including bias dependence of τ would lead to incorrect results in time domain

=> bias dependent delay/phase:

LCR-like adjunct network with bias dependent "C" elements is not a suitable approach for realizing device theory and modeling goals

Solutions:

- modified adjunct network appears to generate correct AC results
- need to do more testing of TR analysis to understand deviations (mostly in base current)
- VA construct for automating implementation of Weil’s approach
 => model remains compatible with older versions