Bandgap Reference Simulation

Principles and Problems

Joerg Berkner

IFAG AIM AP D MI ED CAD
Table of contents

- Bandgap reference basics
- Bandgap reference error sources
- Summary
- Appendix
Bandgap reference basics
IC temperature dependence

- IC depends on T vs. IS(T) an VT(T)
- IS includes $\mu(T)$ and $n_i^2(T)$
- $m (=XTI)$ represents the mobility temperature dependence
- E_g represents the band gap of the material

\[
I_C(T) = \frac{IS(T)}{q_B} \exp \left[\frac{V_{BE}}{V_T(T)} \right]
\]

\[
IS(T) = C \cdot T^m \exp \left(-\frac{E_g}{kT} \right)
\]

\[
IS(T) = IS(T_0) \cdot \left(\frac{T}{T_0} \right)^m \exp \left[-\frac{V_g}{V_T} \left(1 - \frac{T}{T_0} \right) \right]
\]

\[
I_C(T) = IS(T_0) \cdot \left(\frac{T}{T_0} \right)^m \exp \left[-\frac{V_g}{kT / q} \left(1 - \frac{T}{T_0} \right) \right] \exp \left[\frac{V_{BE}}{kT / q} \right]
\]

\[
V_T(T) = \frac{kT}{q}
\]
Bandgap reference basics
VBE temperature dependence

- V_{BE} decreases with T (neg. TC)
- Slope of $V_{BE}(T)$ depends complementary on current density J_C
- Note: The slope changes with temperature. This nonlinearity is the reason for the nonlinearity of V_{BG} vs. T
- Important observation: ΔV_{BE} increases vs. T (pos. TC)
Bandgap reference basics
Widlar diode

- Basic principle of a Bandgap reference is explained here using the circuit proposed by Widlar in 1971.
- Fundamental idea of Widlar: compensate the negative TC of a base emitter voltage V_{BE} by adding a second voltage V_{R2} with positive TC.
- Problem: pos. TC (ΔV_{BE}) < neg. TC (V_{BE}).
- Solution: Amplification of ΔV_{BE} necessary.

Ideal case

$$V_{BG}(T) = V_{BE3} + V_{R2} = \text{const}$$

$$V_{R2} = \Delta V_{BE} \cdot \frac{R_2}{R_3}$$

Real case

$$V_{BG}(T) = V_{BE3} + V_{R2} \neq \text{const.}$$

$$V_{R2} = \Delta V_{BE} \cdot \frac{R_2}{R_3}$$
Bandgap reference basics
Principle

- Using $R_2 > R_3$, the voltage V_{R3} is amplified by the factor R_2 / R_3. Because of that, V_{R2} has a positive TC.
- The reference voltage V_{BG} is now given as the sum of a voltage with positive TC (V_{R2}) and a voltage with negative TC (V_{BE3}).

As demonstrated on the next slide, all Bandgap references use two basic elements:
1. Two BJT’s working at different current densities
2. Adding a V_{BE} (-TC) and a resistor voltage drop (+TC)
Bandgap reference basics

Circuit variations

- Bandgap principle may be realized using different circuit techniques
 1. Widlar, 1971: N1, N2, N3, R1, R2, R3 used for bandgap core
 2. Kujik, 1973: N1, N2 are diode connected, bandgap core with only four devices, N1, N2, R2 and R3, which is shifted upwards, I_{R1} = I_{R2} by OA
 3. Brokaw, 1974: N1, N2 base connected, R2 shifted downwards
 4. Simplified realization of Brokaw circuit, R1 = start resistance
Designer’s goal is, to place the $V_{BG}(T)$ maximum at the temperature of normal device operating conditions.

Note: Maximum of $V_{BG}(T)$ appears at that point where the absolute values of the temperature coefficients of V_{R2} and V_{BE3} are equal.

\[-TC(V_{BE3}) = TC(V_{R2})\]
Bandgap reference basics
Bandgap voltage maximum

- Effect of an increase of the positive temperature coefficient
- Increase may be realized by increasing the ratio \(r = \frac{R_2}{R_3} \) or the ratio \(a = \frac{A_{E2}}{A_{E3}} \)
- Result: shift of the \(V_{BG} \) maximum towards higher temperatures

- Effect of increasing the negative temperature coefficient
- This may be realized by decreasing the collector current density of \(T_3 \) (changing \(I_{CT3} \) or \(A_{ET3} \))
- Result: shift of the \(V_{BG} \) maximum towards lower temperatures

\[V_{BG} = \frac{TC(V_{BE3})}{R_2/R_3} + T \]
Bandgap reference basics
PTAT current

- PTAT = Proportional To Absolute Temperature
- In all Bandgap circuits, the current through R3 is PTAT, because it is defined by ΔV_{BE}
- In a Widlar diode I_{CT2} is proportional to absolute temperature (PTAT) because the current is defined by ΔV_{BE}, which is PTAT
- If $R_1 = R_2$ and $I_{CT1} = I_{CT2} = I_{CT3}$, this is valid for I_{CT1} too

$$I_{CT2} = \frac{V_{R3}}{R_3} = \frac{\Delta V_{BE}}{R_3}$$

$$\Delta V_{BE} = \frac{kT}{q} \ln \left[\frac{I_{S_{T2}}}{I_{S_{T1}}} \right]$$

$V_{R2} = V_3 \cdot \frac{R_2}{R_3}$

TC pos. V_{BE3}

TC neg. V_{BE1}

R_1 R_2 R_3 $T1$ $T2$ $T3$
To evaluate a Bandgap simulation or measurement result, we need a definition of the criteria

- Evaluating DC results we may use:
 1. Bandgap voltage at \(V_{BG} @ T = T_{OP} \) or \(T = 25 \)
 2. Locus of \(V_{BG_{\text{max}}} \)
 3. \(V_{BG} \) temperature coefficient \(T_{C_{VG}} \) (in ppm)

- Other important Bandgap criteria from designers point of view are:
 1. Power supply voltage rejection \(\text{PSRR} = \frac{dV_{BG}}{dV_{CC}} \)
 2. Current consumption
 3. Dynamic behavior: switch on time, stability
 4. Noise behavior

\[
T_{C_{VG}} = \frac{\left(V_{BG_{\text{MAX}}} - V_{BG_{\text{MIN}}} \right)}{\left(T_{\text{MAX}} - T_{\text{MIN}} \right)} \cdot \frac{1}{V_{BG}(T = 25)}
\]

Need to talk about the same things, that is, to use the same definitions
Bandgap reference error sources

Problem definition

Problem: simulated and measured Bandgap voltage are different

Designers conclusion is often: the transistor model is wrong!

Request: improved device models

If a problem is defined, the solution is half-on way

(J.Huxley, Biologist, 1897-1975)

Task: Identify the error sources in BG design

First, we have to distinguish:

The problem appears for a

packaged device on wafer device
Bandgap reference error sources
Mechanical stress

- “Mechanical stress is the main cause of long term drift and package induced inaccuracy in band reference voltages”
- Reason: piezojunction effect changes both mobility and intrinsic carrier concentration in the base
- Result: change in IS resp. VBE in the order of -3 mV to +2 mV (calculated)
- VBG is changed by 1.7 mV for a CMOS bandgap

Source: Fruett et.al. SSC, vol.38, No.7, July 2003, p.1288 ...
Bandgap reference error sources
Mismatch effects

Considering the right hand side Bandgap cell, we may identify six error sources:

1. pnp mirror mismatch, caused by I_B and Early effect
2. R2 and R3 absolute resistor tolerance (changes the branch currents, but not the ratio R_2 / R_3)
3. R2 and R3 resistor mismatch (changes the ratio R_2 / R_3)
4. R2 and R3 absolute TC (changes the absolute value of R2 and R3 and in this way the branch currents)
5. R2 and R3 mismatch of TC (changes the ratio of R_2 / R_3)
6. I_C mismatch of N1 and N2, caused e.g. by emitter size mismatch (creates a additional delta VBE)

“It has been found, that resistor tolerances and current mirror mismatch are the dominant sources of error in bandgap circuits”
(Source: Gupta, MSCS 2002, p. III-575...)
Which SGP model parameters are important for bandgap simulation?

1. IS
2. XTI
3. EG
4. XTB
5. VAR

Staveren (TCS, 1996, pp.418) investigated for a Si-technology the effect of VAR on VBG and found an error in the order of 10 mV

\[V_{Error} = \frac{V_T}{VAR} \times V_{REF} \]

\[V_{Error} = \frac{26mV}{2.6V} = 1.2V \times 12mV \]

The influence of the \(V_{AR} \) on the temperature behavior:

<table>
<thead>
<tr>
<th>Case</th>
<th>Mean error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{AR} = \infty), no influence of the reverse Early effect</td>
<td>19 ppm/K</td>
</tr>
<tr>
<td>(V_{AR} = 4V) and not taken into account</td>
<td>30 ppm/K</td>
</tr>
<tr>
<td>(V_{AR} = 4V) and taken into account</td>
<td>20 ppm/K</td>
</tr>
</tbody>
</table>
Bandgap reference error sources
SGP model parameters: Effect of XTI

- Increasing XTI results in an increasing TC(V_{BET3}), -TC component of the Widlar circuit is enlarged and the maximum is shifted to lower temperatures (green curve)
- Decreasing XTI results in a decreasing TC(V_{BET3}), -TC component of the Widlar circuit is reduced and the maximum is shifted to higher temperatures (red curve)
Bandgap reference error sources
SGP model parameters: Effect of E_G

- Increasing E_G results in an increasing $TC(V_{BET3})$, -TC component is enlarged and the maximum is shifted to lower temperatures (green curve).
- Decreasing E_G results in a decreasing $TC(V_{BET3})$, -TC component of the Widlar circuit is reduced and the maximum is shifted to lower temperatures (red curve).

![Graph showing the effect of E_G on $TC(V_{BET3})$.]
<table>
<thead>
<tr>
<th>Table of contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Bandgap reference basics</td>
</tr>
<tr>
<td>▪ Bandgap reference error sources</td>
</tr>
<tr>
<td>▪ Summary</td>
</tr>
<tr>
<td>▪ Appendix</td>
</tr>
</tbody>
</table>
Summary

There are different possible reasons for Bandgap simulation and measurement errors:

- for packaged devices: mechanical stress
- for on wafer circuits:
 1. pnp mirror mismatch
 2. R2 and R3 tolerance and mismatch, TC tolerance and mismatch
 3. npn IC matching and
 4. npn IC(T) modeling (EG, XTI, XTB, IS, VAR)

To evaluate these effects on bandgap simulation results it is necessary to

1. use special bandgap modeling test circuits, which allow to separate these effects
2. apply improved extraction methods for EG, XTI (e.g. proposed by Beckrich et.al. at CMRF2004)
Appendix
Widlar Bandgap dimensioning

How to choose R3?

\[i = \frac{I_{C1}}{I_{C2}} \]

\[a = \frac{A_{E2}}{A_{E1}} = \frac{I_{S2}}{I_{S1}} \]

\[\Delta V_{BE} = V_T \ln \left[\frac{I_{CT1}}{I_S} \cdot \frac{I_{CT2}}{I_{CT1}} \right] = V_T \ln[a \cdot i] \]

Example: choosing \(i = 1 \) and \(a = 8 \) we get
\(\Delta V_{BE} = 54 \text{ mV} \)

Setting IR3 we may calculate R3

\[R_3 = \frac{54 \text{ mV}}{20 \mu A} = 2.7 \text{ kOhm} \]
Appendix
Widlar Bandgap dimensioning

- How to choose R2?
- We want now to compensate the negative TC of VBE3 adding a voltage with a positive TK, which may be created by ΔV_{BE} multiplied with a factor $r = R_2 / R_3$
- The TC of both terms should cancel each other
- We have to choose R2 appropriate, to reach the necessary gain factor g

\[
V_{BG} = V_{BE} + r \cdot \Delta V_{BE}
\]

\[
- \frac{dV_{BE}}{dT} \approx \frac{d(r \cdot \Delta V_{BE})}{dT} = r \cdot \ln(i \cdot a) \frac{dV_r}{dT}
\]

How to choose R1?
In practice $R1=R2$ is proven as useful

With:
- r = resistor ratio
- i = collector current ratio
- a = emitter area ratio

\[
g = r \cdot \ln(i \cdot a) = \frac{\left(- \frac{dV_{BE}}{dT}\right)}{k \cdot q}
\]

\[
g = r \cdot \ln(i \cdot a) = \frac{1.1 mV / K}{0.08614 mV / K} = 12.77
\]
Appendix

Widlar Bandgap dimensioning

- **Example calculation for r using different TC(VBE)**

<table>
<thead>
<tr>
<th>TC_vbe</th>
<th>k</th>
<th>q</th>
<th>k_q</th>
<th>g</th>
<th>i</th>
<th>a</th>
<th>ln_ia</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00E-03</td>
<td>1.38E-23</td>
<td>1.602E-19</td>
<td>8.6E-05</td>
<td>11.61</td>
<td>1</td>
<td>4</td>
<td>1.39</td>
<td>8.37</td>
</tr>
<tr>
<td>-1.50E-03</td>
<td>1.38E-23</td>
<td>1.602E-19</td>
<td>8.6E-05</td>
<td>17.41</td>
<td>1</td>
<td>4</td>
<td>1.39</td>
<td>12.56</td>
</tr>
<tr>
<td>-2.00E-03</td>
<td>1.38E-23</td>
<td>1.602E-19</td>
<td>8.6E-05</td>
<td>23.22</td>
<td>1</td>
<td>4</td>
<td>1.39</td>
<td>16.75</td>
</tr>
<tr>
<td>-1.00E-03</td>
<td>1.38E-23</td>
<td>1.602E-19</td>
<td>8.6E-05</td>
<td>11.61</td>
<td>1</td>
<td>8</td>
<td>2.08</td>
<td>5.58</td>
</tr>
<tr>
<td>-1.10E-03</td>
<td>1.38E-23</td>
<td>1.602E-19</td>
<td>8.6E-05</td>
<td>12.77</td>
<td>1</td>
<td>8</td>
<td>2.08</td>
<td>6.14</td>
</tr>
<tr>
<td>-1.50E-03</td>
<td>1.38E-23</td>
<td>1.602E-19</td>
<td>8.6E-05</td>
<td>17.41</td>
<td>1</td>
<td>8</td>
<td>2.08</td>
<td>8.37</td>
</tr>
<tr>
<td>-2.00E-03</td>
<td>1.38E-23</td>
<td>1.602E-19</td>
<td>8.6E-05</td>
<td>23.22</td>
<td>1</td>
<td>8</td>
<td>2.08</td>
<td>11.17</td>
</tr>
</tbody>
</table>