“Extraction of RE and its temperature dependence from RF measurements”

Working Group Bipolar (AKB) Meeting
22. October 2009. FH Würzburg, Germany
Outline

• requirements against RE extraction
• the gmx method and its refinement
• derivation of the novel RF method
• extraction plots comparing the two approaches
• temperature dependence
• scaling between two emitter lengths
• summary
Preferences

• lack of additional measurement effort
• a transparent extraction theory
• justifiable neglects resulting in a reasonable extraction equation
• proven regression type extraction technique
• usage of unified RF test structures for saving modeling costs

An often used scheme meeting these requirements is the gmx method: extraction from the DC Gummel plot
RE extraction from DC Gummel measurements

In forward active mode

\[I_c = \frac{c_{10}}{Q_{p,T}} \cdot \exp \left(\frac{V_{biei}}{V_T} \right) \]

\[V_{biei} = V_{be} - (rb + re) \cdot I_b - re \cdot I_c \approx V_{be} - re \cdot I_c \]

The variation of the weighted charge logarithm is relatively small providing the linear regression [1]

\[\frac{\partial \ln(I_c)}{\partial V_{be}} = \frac{gmx}{I_c} = -\frac{\partial \ln(Q_{p,T})}{\partial V_{be}} + \frac{1}{V_T} - \frac{re}{V_T} \cdot gmx \]

It is difficult to select the regression interval. Rearranged form

\[\frac{gmx}{I_c} \approx \frac{1}{V_T} - \frac{re}{V_T} \cdot gmx \]

This should be constant: best satisfied around the extremum
Comparison of the two evaluations

- \(V_{be} \) [V]

- \(re_{-}gmx = 1.04 \Omega \)

Selection of the regression interval is subjective

Minimum location is unique and easy to determine
An expression for the inverse intrinsic transconductance was derived in [2]

\[
\frac{1}{g_m} + re = \frac{\Im(\tilde{h}_{11e})}{\Im(\tilde{h}_{21e})} \tag{1}
\]

Tilde ~ denotes unilateralized (UL) parameters [3]

\[
\begin{align*}
\tilde{y}_{ii} &= y_{ii} + y_{12} \\
\tilde{y}_{21} &= y_{21} - y_{12} \\
\tilde{z}_{ii} &= z_{ii} - z_{12} \\
\tilde{z}_{21} &= z_{21} - z_{12} \\
\tilde{h}_{11} &= \frac{1}{\tilde{y}_{11}} \\
\tilde{h}_{21} &= \frac{\tilde{y}_{21}}{\tilde{y}_{11}} = -\frac{\tilde{z}_{21}}{\tilde{z}_{22}} \\
&\text{for } i = 1, 2
\end{align*}
\]

In UL parameters the transfer branch elements (e.g. parallel capacitances (Y) and series vertical terms like RE (Z) cancel.

An alternative method will be deduced for \(g_m \) making it possible to determine RE from (1)
Simplified equivalent circuit for all present HBT/BJT models
Block#1 parameters

\[y_{11e}^{(1)} = gpi + s \cdot (cpi + cjc) \]
\[y_{12e}^{(1)} = -s \cdot cjc \]
\[y_{21e}^{(1)} = gm - s \cdot cjc \]
\[y_{22}^{(1)} = go + s \cdot cjc \]

\[\tilde{y}_{11e}^{(1)} = gpi + s \cdot cpi \]
\[\tilde{y}_{12e}^{(1)} = -s \cdot cjc \]
\[\tilde{y}_{21e}^{(1)} = gm \]
\[\tilde{y}_{22e}^{(1)} = go \]

Block#2 parameters

\[y_{11e}^{(2)} = \frac{y_{11e}^{(1)} + (re + rci) \Delta Y^{(1)}}{\varepsilon^{(2)}} \]
\[y_{12e}^{(2)} = \frac{y_{12e}^{(1)} - re \cdot \Delta Y^{(1)}}{\varepsilon^{(2)}} \]
\[y_{21e}^{(2)} = \frac{y_{21e}^{(1)} - re \cdot \Delta Y^{(1)}}{\varepsilon^{(2)}} \]
\[y_{22}^{(2)} = \frac{y_{22}^{(1)} + (re + rbi) \Delta Y^{(1)}}{\varepsilon^{(2)}} \]

\[\tilde{y}_{11e}^{(2)} = \frac{\tilde{y}_{11e}^{(1)} + rci \Delta Y^{(1)}}{\varepsilon^{(2)}} \]
\[\tilde{y}_{12e}^{(2)} = \frac{\tilde{y}_{12e}^{(1)} + rci \Delta Y^{(1)}}{\varepsilon^{(2)}} \]
\[\tilde{y}_{21e}^{(2)} = \frac{\tilde{y}_{21e}^{(1)} + rci \Delta Y^{(1)}}{\varepsilon^{(2)}} \]
\[\tilde{y}_{22e}^{(2)} = \frac{\tilde{y}_{22e}^{(1)} + rci \Delta Y^{(1)}}{\varepsilon^{(2)}} \]

\[\varepsilon^{(2)} = \Delta Z^{(2)} \cdot \Delta Y^{(1)} = 1 + re \cdot y_{11b}^{(1)} + rbi \cdot y_{11e}^{(1)} + rci \cdot y_{21e}^{(1)} + \Delta r \cdot \Delta Y^{(1)} \]

\[\Delta r = re \cdot rbi + re \cdot rci + rci \cdot rbi \]
Block#3 parameters

\[\tilde{y}_{11e}^{(3)} = \tilde{y}_{11e}^{(2)} \]
\[\tilde{y}_{21e}^{(3)} = \tilde{y}_{21e}^{(2)} \]

Block#4 parameters

\[\epsilon^{(4)} = \Delta Z^{(4)} \cdot \Delta Y^{(3)} = 1 + rbx \cdot y_{11e}^{(3)} + rcx \cdot y_{22e}^{(3)} + rcx \cdot rbx \cdot \Delta Y^{(3)} \]

\[\tilde{y}_{11e}^{(4)} = \frac{\tilde{y}_{11e}^{(3)} + rcx \cdot \Delta Y^{(3)}}{\epsilon^{(4)}} \]
\[\tilde{y}_{11e}^{(4)} = \frac{\tilde{y}_{11e}^{(2)} + rcx \cdot \Delta Y^{(3)}}{\epsilon^{(4)}} = \frac{\tilde{y}_{11e}^{(2)}}{\epsilon^{(4)}} + \frac{rcx}{\Delta Z^{(4)}} = \frac{\tilde{y}_{11e}^{(1)} + rci \cdot \Delta Y^{(1)}}{\epsilon^{(4)} \cdot \epsilon^{(2)}} + rcx \cdot \Delta Y^{(4)} \]

\[\frac{1}{gm} = \frac{1}{h_{21e}^{(4)}} \cdot \frac{1}{y_{11e}^{(3)}} \cdot \frac{1 - rcx \cdot \tilde{h}_{11e}^{(4)} \cdot \Delta Y^{(4)}}{1 + rci \cdot \tilde{h}_{11e}^{(1)} \cdot \Delta Y^{(1)}} \approx \frac{1}{h_{21e}^{(4)}} \cdot \frac{1}{y_{11e}^{(1)}} \approx \Re \left(\frac{1}{h_{21e}^{(4)}} \right) \cdot \Re \left(\frac{1}{y_{11e}^{(1)}} \right) = \Re \left(\frac{1}{h_{21e}^{(4)}} \right) \cdot \frac{V_T}{I_{bei}} \]

Putting in (1):

\[re = \frac{\Im (h_{11e})}{\Im (h_{21e})} - \Re \left(\frac{1}{h_{21e}} \right) \cdot \frac{V_T}{I_b} \]

same \(h \) parameters as for \(T_f \)
Le=5um, We=0.27um, Tamb=-40°C to 27°C

- Temperature: -40°C, $\text{re}_\text{rf}=2.74\Omega$, $\text{re}_\text{gm}=2.26\Omega$
- Temperature: 0°C, $\text{re}_\text{rf}=2.85\Omega$, $\text{re}_\text{gm}=2.30\Omega$
- Temperature: -20°C, $\text{re}_\text{rf}=2.83\Omega$, $\text{re}_\text{gm}=2.28\Omega$
- Temperature: 27°C, $\text{re}_\text{rf}=2.88\Omega$, $\text{re}_\text{gm}=2.38\Omega$
Le=5um, We=0.27um, Tamb=50…125°C

- temp= 50°C
 - re rf= 2.94Ω
 - re gm x= 2.44Ω
- temp= 75°C
 - re rf= 2.97Ω
 - re gm x= 2.53Ω
- temp= 100°C
 - re rf= 2.95Ω
 - re gm x= 2.62Ω
- temp= 125°C
 - re rf= 2.99Ω
 - re gm x= 2.74Ω
Le=3um, We=0.27um, Tamb=-40 C° ...

- temp=-40C°
 - re_rf = 5.01Ω
 - re_gmx = 4.17Ω

- temp=0C°
 - re_rf = 5.06Ω
 - re_gmx = 4.27Ω

- temp=27C°
 - re_rf = 4.98Ω
 - re_gmx = 4.37Ω
Le=3um, We=0.27um, Tamb=50...125°C

- Temp = 50°C
 - $V_{CE} = 0.00V$
 - $Re_{rf} = 5.07\,\Omega$
 - $Re_{gm} = 4.50\,\Omega$

- Temp = 75°C
 - $V_{CE} = 0.00V$
 - $Re_{rf} = 5.08\,\Omega$
 - $Re_{gm} = 4.61\,\Omega$

- Temp = 100°C
 - $V_{CE} = 0.00V$
 - $Re_{rf} = 5.02\,\Omega$
 - $Re_{gm} = 4.78\,\Omega$

- Temp = 125°C
 - $V_{CE} = 0.00V$
 - $Re_{rf} = 4.97\,\Omega$
 - $Re_{gm} = 5.00\,\Omega$
Temperature dependence and scaling

Le=5um, We=0.27um

\[\text{re}_{\text{rf}}_{\text{scaled}} = 2.88 \times 5 = 14.40 \ \Omega \text{um} \]
\[\text{re}_{\text{gmx}}_{\text{scaled}} = 2.40 \times 5 = 12.00 \ \Omega \text{um} \]

Le=3um, We=0.27um

\[\text{re}_{\text{rf}}_{\text{scaled}} = 5.04 \times 3 = 15.12 \ \Omega \text{um} \]
\[\text{re}_{\text{gmx}}_{\text{scaled}} = 4.42 \times 3 = 13.26 \ \Omega \text{um} \]

The gmx method results in smaller RE and a larger temperature dependence.
Summary

• an improvement of the gmx method has been suggested

• the proposed novel RF method is practically free of neglections

• the same RF data is shared what is necessary anyway for the extraction the transit time parameters

• temperature measurements showed slightly positive temperature coefficients

• the gmx method provides consistently smaller RE values
Thank to Didier Celi from ST Microelectronics, Crolles, France for providing the measurement data and for the helpful discussions in the subject.
References

