HICUM/L2 Models for SiGe-HBTs in IHP 0.13µm BiCMOS Technology

Fischer, Gerhard

IHP Microelectronics
Frankfurt (Oder), May 2011
Agenda

- HBTs for IHP’s 0.13 SiGe BiCMOS technology SG13
- Scaled HICUM/L2 model for the low-voltage HBT
- Scaled HICUM/L2 model for the high-voltage HBT
 - issue 1: base current as function of V_{CB}
 - issue 2: avalanche breakdown simulation
- Design kit implementation
 - issue 3: incompatibility ADS \Leftrightarrow Spectre
HBT Portfolio in IHP SG13

- **Low-voltage HBT npn13p**
 - BVCEO = 1.7V, $f_T/f_{max} = 250/300$ GHz
 - layout configurations: BEC, CBEBC

- **High-voltage HBT npn13v**
 - BVCEO = 3.7V, $f_T/f_{max} = 45/120$ GHz
 - layout configuration: CBEBC

- **Status Q1/2011**
 - npn13p and npn13v currently in qualification
Model Parameter Extraction npn13p

- HBT size and configuration
 - layout: BEC
 - scaling:
 - drawn emitter length scaling: 0.36\,\mu m – 0.96\,\mu m
 - drawn emitter width: 0.12 \,\mu m

- Extraction environment
 - ICCAP 2009
 - simulator: ADS2008
 - model call in circuit: "... model MAIN HICUM2_22 ..." → only HICUM/L2.22?
 - scaling with XMOD’s Smach
Scaled Model Results DC

Gummel Characteristics $V_{CB} = -0.5V, 0V, +0.5V$

Output Characteristics $V_{BE} = 0.6(0.05)1.0V$
Scaled Model Results RF

\[f_T (V_{BE}) \]
\[V_{CB} = -0.5(0.5)1.5V \]
Issue: \(f_T @ \) High \(V_{BE}, V_C \)

- Could not model transit frequency in the very high-current range for high \(V_{CE} \) and \(V_{CB} \)
- Actions

 fine-tuning of transit time parameters (esp. \(thcs \))

 \(\rightarrow \) lead to no satisfying solution
Scaled Model Results RF II

S parameter
HBT: 0.12x0.84µm²
V_{BE} = 0.87(0.02)0.93V
V_{CB} = 0V
f = 500MHz ... 50GHz
Model Parameter Extraction npn13v

- HBT size and configuration
 - Layout: CBEBC
 - Scaling:
 - Drawn emitter length scaling: 1µm – 5µm
 - Drawn emitter width: 0.18 µm

- Extraction environment
 - ICCAP 2009
 - Simulator: ADS2008
 - model call in circuit: "... model MAIN HICUM2_22 ..."
 - scaling with XMOD’s Smach
Results for npn13v (1x0.18x2µm²)

Gummel Characteristics
$V_{CB} = -0.5V, 0V, +0.5V$

Output Characteristics
$V_{BE} = 0.6(0.05)0.9V$

$I_C (V_{BE})$
$V_{CE} = 0.5(1.0)4.5V$

$f_T (V_{BE})$
$V_{CB} = -0.5, 0, +1, +2, +3V$
Issue 1: Base Current

- Could not model
 - base current above $V_{BE}=0.8\,V$
 - base current @ $V_{CB}=-0.5\,V$
- Introduction of $tbhrec$
 - excess BC recombination time $tbhrec$ leads to good fit in the range $0.7\,V < V_{BE} < 0.8\,V$
- Open issue:
 - base current increase for $V_{CB} = -0.5\,V$
 - base current for $V_{BE} > 0.9\,V$

$I_B (V_{BE})$
$V_{CB}=-0.5, 0, +0.5\,V$

$tbhrec = 0$

HBT: HV-HBT
Layout: $1\times(0.18\times2)\,\mu m^2$
$I_B (V_{BE})$
$V_{CB}=-0.5, 0, +0.5\,V$

$tbhrec = 600s$
Issue 2: Avalanche Current I

- Simultaneous simulation of I_B direction change at high V_{BE} and in the temperature range -40°C up to +125°C not possible
 - relevant parameter: temperature coefficient for the avalanche factor α_{fav}

HBT: HV-HBT
Layout: 8x(0.18x2)µm²
$I_B (V_{CE})$
$V_{BE}=0.6(0.05)0.9V$

$\alpha_{fav} = -0.15 \, K^{-1}$

HBT: HV-HBT
Layout: 1x(0.18x2)µm²
Issue 2: Avalanche Current II

- Compromise
 - change of avalanche temperature coefficient α_{faV} → good temperature dependence but bad fit at $V_{BE} > 0.75V$

HBT: HV-HBT
Layout: 8x(0.18x2)μm²
$I_B (V_{CE})$
$V_{BE} = 0.6(0.05)0.9V$

$\alpha_{faV} = -0.08 \text{ K}^{-1}$
Models for Design Kit

- For the design kit IHP offers model cards for different simulators
 - in Spectre syntax for Cadence and ADS users
 - in HSPICE syntax

- Extraction environment
 - ICCAP 2009 (Spectre 6.2)
 - HICUM/L2v...; scaling with XMOD’s Smach
 - Simulator: ADS2008 (... model MAIN HICUM2_22 ... → HICUM/L2.22)
 - ADS delivers most stable and fast simulation results but main target are Cadence users

- Main issue
 - I could not create a HICUM/L2 model card for Spectre which reproduces the ADS simulations
 - scaled model did not work at all
 - even non-scaled HICUM ADS simulations did not agree with simulations under Spectre
Modeling Variants for HBT Type 0.12x0.84 μm² I

- ICCAP Environment
- ADS simulation with Verilog-A source code
 - L2.23 (`#load "veriloga", "../..hicumL2V2p23.va"`)
 - same results with L2.24
- Results identical to version with ADS internal HICUM

\[I_C(V_{CE}) = 0.6(0.05)1.0V \]
\[f_T(V_{BE}) = -0.5(0.5)1.5V \]

\[CJE(0V) = cjei0 + cjep0 + cbepar = 9.7fF \]
\[CJC(0V) = cjci0 + cjcx0 + cbcpar = 9.0fF \]
Modeling Variants for HBT Type 0.12x0.84 µm² II

- ICCAP Environment
- Simulator
 - standard ADS with model call “... HICUM ...”
 - ADS in ICCAP “spmodeads” (circuit in native Spectre syntax)
- Simulation results differ from previous ADS amongst others by
 - all capacitances are too low
 - stronger avalanche current

\[I_C(V_{CE}) \]
\[V_{BE} = 0.6(0.05)1.0V \]

\[f_T(V_{BE}) \]
\[V_{CB} = -0.5(0.5)1.5V \]
Modeling Variants for HBT Type 0.12x0.84 μm² III

- ICCAP Environment
- Simulator
 - standard ADS with model call “... HICUM ...”
 - ADS in ICCAP “spmodeads” (circuit in native Spectre syntax)
- Partial adaption to previous ADS by
 - increase capacitance parameters
 - adjust avalanche parameter q_{avl}

$I_C (V_{CE})$
$V_{BE} = 0.6(0.05)1.0V$

$f_T (V_{BE})$
$V_{CB} = -0.5(0.5)1.5V$

$C_JE(0V) = c_{jei0} + c_{jep0}$
$+ c_{bepar} = 9.7fF$

$C_JC(0V) = c_{jci0} + c_{jcx0}$
$+ c_{bcpar} = 9.0fF$
Modeling Variants for HBT Type 0.12x0.84 µm² IV

- ICCAP Environment
- Spectre6.2 with internal HICUM and with Verilog-A
 'adhl_include “../../../../hicumL2V2p24.va”'
- Simulation results differ from ADS amongst other by
 - C_{BC} still too low
 - stronger avalanche current
 - kinks in the $S_{ij}(\text{freq}, V_{CE})$ functions

\[I_C (V_{CE}) \]
\[V_{BE} = 0.6(0.05)1.0V \]

\[f_T (V_{BE}) \]
\[V_{CB} = -0.5(0.5)1.5V \]