NQS modelling with HiCuM: What works, what doesn't

A. Bhattacharyya, C. Maneux, S. Frégonèse, T. Zimmer

IMS - University Bordeaux 1, France
Outline

- **Introduction**
 - NQS basics
 - High frequency Y parameters

- **NQS model implementation inside HICUM**
 - Vertical NQS implementation

- **Modeling results**
 - NQS modeling with HICUML2
 - Scaling of NQS parameters

- **Conclusion**
Introduction: NQS basics

- **NQS basics:**
 As the operating frequency approaches the cutoff frequency, the transistor can no longer follow external excitations instantaneously. *(Non Quasi Static effect)*

- **Transient variation of electron concentration inside the base**

 ![Switch-off](image1.png)

 ![Switch-on](image2.png)

 Fig. 5. Transient variation of electron concentration profile when V_{EB} decreases from the switch-on voltage to zero.

 Fig. 8. Transient variation of electron concentration profile when V_{EB} increases from zero to the switch-on voltage.

 From Suzuki IEEE TED 1992
Introduction: high frequency Y parameters

- Phase of admittance parameters show NQS effect.

Phase(y.11)

- Frequency (Hz)

Phase(y.21)

- Frequency (Hz)

NQS model implementation: vertical NQS

- Phase shift network with excess charge.

\[Q_{dei} = \frac{Q_{dei}}{1 + sT_D} \]
\[T_D = alqf.T_f \]

HBT HICUML2V24
NQS model implementation: vertical NQS

- Phase shift network with transfer current (HICUML2).

\[I_{xf} = V(xf\ 2) \]

Weil-McNamee formulation

\[I_{txf} = \frac{I_{tzf}}{1 + sT_D + (sT_D')^2} \]

Gyrator equivalent formulation (L. Lemaitre)

\[I_{txf} = \frac{d}{dt} (alit \ast T_f \ast V(xf\ 1)) + V(xf\ 2) \]

\[V(xf\ 1) = \frac{d}{dt} (alit \ast T_f / 3 \ast V(xf\ 2)) + V(xf\ 2) \]

\[I_{txf} = \frac{I_{tzf}}{1 + sT_D + (sT_D')^2} \]
Compact modeling of transistor having B3T technology and BiCMOS9MW layout. (f_T peak = 240GHz)

- h_{21}: phase (current gain) $V_{BE}=0.76V \rightarrow 0.92V$, $V_{CE}=1.2V$

NQS flag = 0

DEV_L3W0_27E1B1C1

NQS flag = 1

DEV_L3W0_27E1B1C1

NQS effect in h_{21} phase and modeled using HICUM L2V24 model in a transistor of $L_E = 3\mu m$ and $W_E = 0.27\mu m$.

Modeling results: NQS modeling with HICUM L2
Parameter optimization in different devices

\(V_{BE} = 0.76\text{V} \rightarrow 0.92\text{V}, \ V_{CE} = 1.2\text{V} \)

NQS effect in \(h_{21} \) phase and modeled using HICUM L2.24 model for transistors having emitter lengths \((L_E) = 3\mu\text{m}, 5\mu\text{m}, 10\mu\text{m} \) and emitter width \((W_E) = 0.27\mu\text{m} \).
Large transistors show abnormality in h_{21} phase at high injection level

Modeling results: NQS modeling with HICUM L2

h_{21} phase for different W_E (0.54, 0.84, 1.08µm) with same L_E (10µm) at $V_{BE}=0.76V \rightarrow 0.92V$, $V_{CE}=0.8V$, 1.2V
NQS parameters are optimized for low injection level and plotted against emitter length (L_E) and real emitter area (considering the spacer width of 55 nm).

NQS parameters at $V_{BE}=0.76V$ and $0.80V$ and $V_{CE}=1.2V$

alit = 1.0
alqf = 0.5

alqf decreases at higher emitter area

Constant over length
Conclusion

- NQS basic is presented while showing the HICUM implementation.
- HBT Modeling results with HICUM L2V24 model are presented.
- HICUM provides good results but at high frequency and long devices there is scope for modification (essderc paper 2011, submitted).
- Transistors with higher emitter widths show abnormality in h_{21} phase at high injection.
- Scaling of two NQS parameters show that constant value of NQS parameters ($alit=1$, $alqf=0.5$) provide a good modeling accuracy.
This work is part of the:

- DOTFIVE project supported by the European Commission through the Seventh Framework Programme for Research and Technological Development.

Acknowledgements also to the MEDEA+ “SIAM” project.

We want to thank ST microelectronics and XMOD Technologies for helpful discussions.