Cold S-Parameter Measurements on Vertical PNP Transistors

Joerg Berkner
Principal Bipolar/BiCMOS Modeling
Infineon Technologies
ATV PTP TD EDA
Agenda

- Introduction
- Measurement and parameter extraction for C_{BE} and C_{BC}
- Measurement and parameter extraction for C_{BC} and C_{CN}
- Measurement and parameter extraction for C_{CN} and C_{NS}
- Summary
Intro

Two way’s for junction capacitance measurement

How to measure junction capacitances?

<table>
<thead>
<tr>
<th>C(V)-Measurement</th>
<th>Cold S-Parameter-Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement device</td>
<td>Cold s-parameter</td>
</tr>
<tr>
<td>LCR meter</td>
<td>NWA</td>
</tr>
<tr>
<td>Advantage</td>
<td>Only one contact necessary for fwd DC, CV and S-parameter measurements, ensuring consistent data</td>
</tr>
<tr>
<td>Fast measurement</td>
<td>Sufficient accurate, if four probes are used</td>
</tr>
<tr>
<td>Sufficient accurate, if four probes are used</td>
<td></td>
</tr>
<tr>
<td>Disadvantage</td>
<td>Additional calibration for cold s-parameter frequencies needed</td>
</tr>
<tr>
<td>Calibration slow (minutes)</td>
<td>Bias tee’s must cover frequency range for both cold and hot s-parameter measurements</td>
</tr>
<tr>
<td>Resolution: for small cap’s parallel structures needed</td>
<td></td>
</tr>
</tbody>
</table>

AKB2011, May 06, 2011, Munich, J.Berkner, Cold-S-Parameter Measurements on VPNP, v110504

Copyright © Infineon Technologies 2011. All rights reserved.
The term “cold” is used, if a bipolar transistor is operated in non-active mode: all junctions are reverse or zero biased and no transfer currents flow \([1][2]\)

Under these circumstances the small signal equivalent circuit may be reduced to a capacitive PI circuit

Assuming the elements of a PI circuit are pure capacitive, we get the matrix \(Y_{PI, C}\) and may calculate \(C_A, C_B\) and \(C_C\)

\[
Y_{PI, C} = \begin{bmatrix}
 Y_{11} & Y_{12} \\
 Y_{21} & Y_{22}
\end{bmatrix} = \begin{bmatrix}
 Y_A + Y_C & -Y_C \\
 -Y_C & Y_B + Y_C
\end{bmatrix}
\]

\[
Y_{PI, C} = \begin{bmatrix}
 j\omega (C_A + C_C) & -j\omega C_C \\
 -j\omega C_C & j\omega (C_B + C_C)
\end{bmatrix}
\]

\[
C_A(V) = \frac{\text{IMAG}(Y_{11} + Y_{12})}{2\pi * f}
\]
\[
C_B(V) = \frac{\text{IMAG}(Y_{22} + Y_{12})}{2\pi * f}
\]
\[
C_C(V) = 0.5 \frac{\text{IMAG}(Y_{21} + Y_{12})}{2\pi * f}
\]
Contrary to the npn transistor, there are four junction capacitances C_{BE}, C_{BC}, C_{CN} and C_{NS} to determine for a VPNP.

Whereas for the npn all three capacitances C_{BE}, C_{BC} and C_{CS} may be measured and extracted using one test structure, we need TWO test structures for the VPNP.

Test structure 1: NWA-Ports connected to B and C

Test structure 2: NWA-Ports connected to C and N
Agenda

- Introduction

- Measurement and parameter extraction for C_{BE} and C_{BC}

- Measurement and parameter extraction for C_{BC} and C_{CN}

- Measurement and parameter extraction for C_{CN} and C_{NS}

- Summary
VPNP cold s-parameter measurements

Circuit 1: BE and BC capacitance

- BE and BC junctions are reverse biased, $V_C = V_E = V_S = 0$ V
- Sweep V_B is applied to port 1, the maximum value is given by BV_{BE0}
- This circuit is preferred for C_{BE} extraction, but not for C_{BC}

\[
C_{BE}(V) = \frac{\text{IMAG}(Y_{11} + Y_{12})}{2\Pi \ast f}
\]

\[
C_{BC}(V) = -\frac{1}{2} \frac{\text{IMAG}(Y_{21} + Y_{12})}{2\Pi \ast f}
\]
VPNP cold s-parameter measurements
Circuit 1: BE and BC capacitance

- 1st extraction step delivers C_{BE} and C_{BC} vs. frequency
- A pure capacitive PI circuit will deliver constant curves
- For C_{BE} this is nearly given, for C_{BC} not. Why?

$C_{BE} = f(freq)$, $V_B = \text{Par.}$
Mean value

$C_{BC} = f(freq)$, $V_B = \text{Par.}$
Mean value
VPNP cold s-parameter measurements
Series resistance effect

- A simulation using only a few SGP parameters demonstrates the effect of a series resistance, reducing the extracted capacitance with increasing frequency.
- We found: RB, RC affects C_{BE} & C_{BC}, Rsub affects Csub [3].
- Conclusion: To avoid the series resistance effect, the frequency range must be chosen low enough for cold s-parameter measurements.

Cbe=f(f), Vbe=+0.2 ...-2, SGP-simulation with RB=0

Cbe=f(f), Vbe=+0.2 ...-2, SGP-simulation with RB=100
2nd extraction step: using the mean values we may calculate \(C_{BE}(V) \) and \(C_{BC}(V) \)

For the parameter extraction we have two possibilities: optimization of a calculated or of a simulated curve on the measured \(C(V) \) data

Which way is the better one?
VPNP cold s-parameter measurements
Two way’s for model parameter extraction

How to extract the junction capacitance model parameters?

Optimization on a calculated curve using the function PNCApSimu

Optimization on a simulated curve using a compact model e.g. VBIC or HLO

<table>
<thead>
<tr>
<th>Optimization on</th>
<th>calculated data</th>
<th>simulated data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage</td>
<td>Very fast</td>
<td>Real equations of the compact model are used</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>PNCApSim does not include effect like punch through etc. For more complicated capacitance equations a transform must be written</td>
<td>Only capacitances between Port1 and Port2 may be simulated Capacitances to ground, e.g. the substrate capacitance, may not be simulated</td>
</tr>
</tbody>
</table>
Agenda

- Introduction

- Measurement and parameter extraction for C_{BE} and C_{BC}

- Measurement and parameter extraction for C_{BC} and C_{CN}

- Measurement and parameter extraction for C_{CN} and C_{NS}

- Summary
VPNP cold s-parameter measurements

Circuit 2: BC and CN capacitance

- BC and CN junctions are reverse biased, $V_N = V_E = V_S = 0\, V$, sweep V_C is applied to port 2
- This circuit is preferred for C_{BC} extraction, because BV_{CB0} may be applied

\[
C_{BC}(V) = -\frac{1}{2} \frac{\text{IMAG}(Y_{21} + Y_{12})}{2\pi f}
\]

\[
C_{CN}(V) = \frac{\text{IMAG}(Y_{22} + Y_{12})}{2\pi f}
\]
VPNP cold s-parameter measurements
Circuit 2: BC and CN capacitance

- 1st extraction step delivers C_{CB} and C_{CN} vs. frequency
- Effect of series resistances is clearly visible again

Graphs:

- $C_{CB} = f(freq), V_{C} = \text{Par.}$
 - Mean value
- $C_{CN} = f(freq), V_{C} = \text{Par.}$
 - Mean value
VPNP cold s-parameter measurements

Circuit 2: BC and CN capacitance

- 2nd extraction step delivers $C_{CB}(V)$ and $C_{CN}(V)$
- For C_{CB} the punch through effect becomes clear visible
- C_{CB} was optimized here using the transform cjc_pt, which uses the HL0 equation set for a capacitance including punch thru effect

$$C_{CB} = f(V_C)$$

$$C_{CN} = f(V_C)$$
Agenda

- Introduction

- Measurement and parameter extraction for C_{BE} and C_{BC}

- Measurement and parameter extraction for C_{BC} and C_{CN}

- Measurement and parameter extraction for C_{CN} and C_{NS}

- Summary
VPNP cold s-parameter measurements

Circuit 3: CN and NS capacitance

- CN and NS junction are reverse biased, $V_B = V_E = V_S = 0 \text{ V}$, sweep V_N is applied to port 1
- This circuit is preferred for C_{CN} extraction (because it may be extracted here from the mean of Y_{12} and Y_{21}) and for C_{NS} extraction

\[C_{CN}(V) = -\frac{1}{2} \frac{\text{IMAG}(Y_{21} + Y_{12})}{2\Pi \cdot f} \]

\[C_{NS}(V) = \frac{\text{IMAG}(Y_{11} + Y_{21})}{2\Pi \cdot f} \]
VPNP cold s-parameter measurements
Circuit 3: CN and NS capacitance

- 1st extraction step delivers C_{CN} and C_{NS} vs. frequency
- Here only two frequency points have been used to reduce the series resistance effect

$C_{CN} = f(\text{freq}), \quad V_N = \text{Par.}$

Mean value

$C_{NS} = f(\text{freq}), \quad V_N = \text{Par.}$

Mean value

AKB2011, May 06, 2011, Munich, J.Berkner, Cold-S-Parameter Measurements on VPNP, v110504

Copyright © Infineon Technologies 2011. All rights reserved.
2nd extraction step delivers $C_{CN}(V)$ and $C_{NS}(V)$
Agenda

- Introduction

- Measurement and parameter extraction for C_{BE} and C_{BC}

- Measurement and parameter extraction for C_{BC} and C_{CN}

- Measurement and parameter extraction for C_{CN} and C_{NS}

- Summary
The four space charge layer capacitances of a VPNP may be extracted using cold s-parameter measurements. Advantage is the possibility to measure the data for fwd DC curves, for C_{BE}, C_{BC} and fT consistent using one contact event only. For the capacitances C_{CN} and C_{NS}, however, a 2nd test structure and, consequently, a 2nd contact event is necessary. The frequency range for cold s-parameter measurements must be chosen carefully to avoid series resistance effects. For fast transistors, the frequency range for the “standard”-fT-measurements and cold s-parameter measurements my be differ considerably. For this reason the calibration process and the measurement of open and short deembedding structures must be made twice. The measurement routine must be able to handle these two different deembedding steps.
Literature

Innovative semiconductor solutions for energy efficiency, communications and security.