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CONTEXT

o llI-V lab InP/InGaAs HBT technology

o Challenging applications:

o High speed optical communications systems (working above 100 Gbit/s)

o Very high reliability requirements : :
Note: this methodology is

o (e.g., submarine communication systems) not process specific.

o Accurate reliability modeling is desirable | Can be applied to SiGe HBT,
BiCMOS or CMOS

f; and f,,,, are around 300 GHz




INTRODUCTION

Standard method based on a static approach:

o Simulate circuit & estimate bias / temperature constraints for
each device

o Calculate device degradations

o Simulate circuit again with new device parameters (eventually
iterate)

ISSUES:

o Degradation mechanisms are dynamic



INTRODUCTION

Need for a “real-time” dynamic degradation model

O

Directly integrated in CAD environments (i.e. in PDK for easy
adoption)

Use compact model with slowly varying parameters as a function
of bias and temperature under real circuit operating conditions

Can be realized easily in VerilogA language (straightforward
implementation in commercial simulators)

Small performance penalty (compiled code)



INTRODUCTION

o New methodology (reliability improvement short loop)
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INITIAL MODELING

o Why choosing HiCuM L2 v2.30 compact model ?
o CMC labeled model (Available in most commercial simulators)
o VerilogA code available

o HiCuM accuracy + Specific improvements of version v2.30

o Modeling of advanced HBTs

Parameter extraction for good initial model (@ transistor level and
@circuit level) is already very challenging



INITIAL MODELING

Results for T7 (W =0.5um and L,=7um)
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TRANSISTOR AGING MODEL

Accelerating aging set up in: to observe degradations

o Stress conditions: P1, P2, P3, P4 (and P2’)

o JC=400kA/cm?for P1, P2, P3, P4 (and 610 kA/cm? for P’2)
o VCE=1.5,2,2.5and 2.7 V for P1, P2, P3 and P4

o Tj=80,92,106 and 112°C

Need feedback ¢

Z v M@ B
loop to 1| o ? O
maintain R IUEIO) N )

Ve and J.




TRANSISTOR AGING MODEL

Observed Gummel characteristic
o Moderate IC increase

o Important IB increase

o Moderate IC decrease (high J)
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TRANSISTOR AGING MODEL

o 2D Calibrated TCAD Hydrodynamic
simulations 10" g

2 s Meas @ Oh
10 ——TCAD (no EB traps)
3 o Meas @ 1250h

10

—— TCAD (N,=1,15x10"“cm”)

o Donor traps at E-B junction surface are
responsible for the current increase

—_
o
A

o Trap concentration increase linearly with
stress time
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TRANSISTOR AGING MODEL

o Trap density is not a compact model parameter : need saturation
currents

- @ Vi Ve
LiBLi GXP{—J =L+ Ly GXp(—J -1
] My Vs My Vr

Vo Vo
i =—@— exp BEJ—exp[ BC]
o Qp,T Q I: (VT VT

p0

o IS and IBEIS are extracted from post stress measurements

o IS and IBEIS follow the same linear evolution (as traps) with stress
time

o IS and IBEIS can be advantageously used as variables of the aging
model
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TRANSISTOR AGING MODEL

Donor trap density can be modeled as a generation mechanism

()
trap
=G(T.,J
2 (7,J.)
Same holds for IBEis and IS
(T dl (¢
BCE;( ) IBEIS(T J ) jlf ) — A]S(Ta Jc)

Constant increasing rates follow an Arrhenius law

r.J.)<B ex el J ™ T.J B le
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EIS, EIBEIS, BIBEIS, AIS are new model parameters
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TRANSISTOR AGING MODEL

o Parameter extraction of IS and IBEIS (P2, P3, P4) (T5, T7, T10)
o extract constant generation rates (AIS and AIBEIS)

o AIS and AIBEIS follow an Arrhenius law

o EIBEIS=1.34 eV

107 1
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VERILOGA IMPLEMENTATION IN HiCuM MODEL

2 new nodes
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VERILOGA IMPLEMENTATION IN HiCuM MODEL

module hic2_full_XDK (c,b,e,s,tnode, ibeis_out, is_out);

New nodes
branch (ibeis_out) br_ibeisout and branch
branch (is_out) br_isout;
ibeis = V(br_ibeisout) +ibeis0; Update model parameters: new nodes
1S = V{br_isout) A voltage represent degradation
aibeis = bibeis*exp(-eibeis/(("P_K/'P_Q)*Tdev)) *pow( jc ),alphal); Temp & Jc
ais = bis*exp(-eis/(('P_K/P_Q)*Tdev)) *pow( jc ),alpha2); dependence
I(br_ibeisout) <+ -aibeis;
I(br_ibeisout) <+ ddt(V(br_ibeisout));
Branch
I(br_isout) <+ -ais; equations
I(br_isout) <+ ddt(V(br_isout));

16



VERILOGA IMPLEMENTATION IN HiCuM MODEL

module hic2_full _XDK (c,b,e,s,tnode, ibeis_out, is_out);
branch (ibeis_out) br_ibeisout

branch (is_out) br_isout;

ibeis = V(br_ibeisout) +ibeisO;

is = V(br_isout) +is0;

aibeis = bibeis*exp(-eibeis/(("P_K/'P_Q)*Tdev))

ais = bis*exp(-eis/(("P_K/'P_Q)*Tdev))

I(br_ibeisout)
I(br_ibeisout)

<+ -atsf * aibeis;
<+ ddt(V(br_ibeisout));

I(br_isout)
I(br_isout)

<+ -atsf * ais;
<+ ddt(V(br_isout));

Simulation of degradations is too
slow: 10000 years of CPU time !!!

*pow( jc ),alphal);
*pow( jc ),alpha2);

ATSF is the Accelerating Time
Scale Factor: new parameter

ATSF=3.6E13 100ns->1000h
ATSF=3.15E15 100ns -> 10 years

17



METHODOLOGY VALIDATION

o Verification on base current (monitored during stress — 1000 h)

o Transistor T7
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METHODOLOGY VALIDATION

o Transimpedance Amplifier (TIA)
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METHODOLOGY VALIDATION

2 versions of the TIA available

O

O

O

TIA (high DC gain — low cutoff frequency)
TIA-HF (lower DC gain — Higher bandwidth)
22 samples submitted to accelarated

aging for 1008 hours

chuck temperature70°C

Tj up 125°C
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METHODOLOGY VALIDATION

Transient simulation of the TLIA
o ATSF=36e12 (100ns=10years)

o TEMP=100°C

o Differential output voltage (S-Sb)

Circuit degradation can be observed

Dynamically

V [V]

Altered parameters can be extracted at

Any time step
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METHODOLOGY VALIDATION

VIV
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METHODOLOGY VALIDATION
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METHODOLOGY VALIDATION

Transient simulation of the TLIA

TLIA 100ns = 1000h TEMP= 100C

0.08 0.08

Steady state @ selected time step:

0.06

0.04 | 04 run AC simulation with aged parameters
o o0 02 Using a script to generate “alter” statements
) 0 gathered in a include file

-0.02

-0.02

-0.04 -0.04

-0.06 -0.06

0 2e-08 4e-08 6e-08 8e-08 1e-07
time [s]

Alter:AGINGalterO var="1182.1395.Q1.AGED_REQ" VarValue=1.051097526541248e+00
Alter:AGINGalter1 var="1182.1395.Q1.AGED_IS0" VarValue=2.296752299864880e-05
Alter:AGINGalter2 var="1182.1395.Q1.AGED_IBEIS0O" VarValue=2.720339978065819e-02
Alter:AGINGalter4 var="1182.1414.Q1.AGED_IS0" VarValue=2.477855478244199¢e-03
Alter:AGINGalter5 var="1182.1414.Q1.AGED_IBEISO" VarValue=1.822901099996015e+00
Alter:AGINGalter7 var="1182.1407.Q1.AGED_IS0" VarValue=1.003050582644627e-04
Alter:AGINGalter8 var="1182.1407.Q1.AGED_IBEISO" VarValue=1.021350703026095e-01
Alter:AGINGalter10 var="1182.1408.Q1.AGED_IS0O" VarValue=8.399430332061722e-05
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METHODOLOGY VALIDATION

S parameters |S21| up to

65GHz 35 . : .

T T
TLIA HF Die B19 Oh
TLIA HF Die B20 0Oh
TLIA HF Die B19 1008h - 70°C
TLIA HF Die B20 1008h - 70°C

o Measurements versus
simulations (Agilent
ADS)

30 | TIA
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IN

RELIABILITY AWARE DESIGN EXAMPLE

o TIA transiant simulations (Cadence spectre)

o No DC offset compensation loop

_— e ———
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| voltage
| \}}

Main amplifier

___________________________

VREF is constant
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RELIABILITY AWARE DESIGN EXAMPLE

o TIA transiant simulations (Cadence spectre)

o DC offset compensation loop with small gain

—————————————————————————————————————

:{ DC offset i Low-pass : i 2.65
\ compensation :fllters !

 loop 2,60 -
____________________________________________ 2,55 —
-iTIIIIiIzzpmizzziziziziiiiiocy
' Reference 'V <
| voltage  ouT = 2,50
Vin ! ' Vouts g
| [
I\ Main amplifier ! = 245 -
-------------------------------------- —VTIA | 8
—\/REF 2,40
VREF can’t follow VTIA 535
over time
—VOUT| 230 . . . . .
—\/OUTb 0,E+00 2E-08 4E-08 6,E-08 8E-08 1E-07

Time (s)




RELIABILITY AWARE DESIGN EXAMPLE

o TIA transiant simulations (Cadence spectre)

o DC offset compensation loop with high gain

—————————————————————————————————————

I{ DC offset :’If_.:)w-pass :
| compensation : ilters |
 loop 4@- ] |
(Reference| . | | Vour
' volt g i =
Vin :vo age \A/1> \ Vours &
: [4}]
____________________ Main amplifier g
s
—VTIA =
. —VREF
VREF follows VTIA over time due 2,35
to higher loop gain 2,30 . . . . .
_VOUT 0,E+00 2E-08 4,E-08 6,E-08 8,E-08 1,E-07
Only the aging model allows —VOUTH Time (s)

understanding this phenomenon
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CONCLUSION

New method for device dynamic reliability simulation
Straightfoward initial implementation in simulators (VerilogA)
But good convergence properties needs careful rework
Available in a standard PDK (easy to adopt)

Simulates complex interactions between stress conditions
(bias/temperature) and device degradations

Methodology is physics based
Validated at transistor level (InP/InGaAs HBT process)

Validated at circuit level (24 transistors TIA — working above
100GHZ — complex offest compensation loops)

Allows reliability aware circuit design

Shortens reliability improvement feedback loops
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