Dynamic Ageing Modeling for Reliability Simulation

* XMOD Technologies, Bordeaux, France
+ III-V Lab, joint lab between Bell Labs, Thales and CEA/Leti, Marcoussis, France
$ Laboratoires IMS, Université de Bordeaux, France

BipAK Munich – Nov 14th 2012
OUTLINE

- Context
- Introduction
- Initial Modeling
- Transistor aging model
- VerilogA implementation in HiCuM model
- Methodology validation
- Reliability aware circuit design example
- Conclusion
CONTEXT

- III-V lab InP/InGaAs HBT technology
- Challenging applications:
 - High speed optical communications systems (working above 100 Gbit/s)
- Very high reliability requirements
 - (e.g., submarine communication systems)
- Accurate reliability modeling is desirable

Note: this methodology is not process specific.
Can be applied to SiGe HBT, BiCMOS or CMOS

\[f_T \text{ and } f_{MAX} \text{ are around 300 GHz} \]
INTRODUCTION

Standard method based on a static approach:

- Simulate circuit & estimate bias / temperature constraints for each device
- Calculate device degradations
- Simulate circuit again with new device parameters (eventually iterate)

ISSUES:

- Degradation mechanisms are dynamic
INTRODUCTION

Need for a “real-time” dynamic degradation model

○ Directly integrated in CAD environments (i.e. in PDK for easy adoption)

○ Use compact model with slowly varying parameters as a function of bias and temperature under real circuit operating conditions

○ Can be realized easily in VerilogA language (straightforward implementation in commercial simulators)

○ Small performance penalty (compiled code)
INTRODUCTION

- New methodology (reliability improvement short loop)
INITIAL MODELING

- Why choosing HiCuM L2 v2.30 compact model?
- CMC labeled model (Available in most commercial simulators)
- VerilogA code available
- HiCuM accuracy + Specific improvements of version v2.30
 - Modeling of advanced HBTs

Parameter extraction for good initial model (@ transistor level and @ circuit level) is already very challenging
INITIAL MODELING

Results for T7 ($W_E=0.5\mu m$ and $L_E=7\mu m$)
TRANSISTOR AGING MODEL

Accelerating aging set up in: to observe degradations

○ Stress conditions: P1, P2, P3, P4 (and P2’)
○ JC = 400 kA/cm² for P1, P2, P3, P4 (and 610 kA/cm² for P’2)
○ VCE = 1.5, 2, 2.5 and 2.7 V for P1, P2, P3 and P4
○ Tj = 80, 92, 106 and 112°C

Need feedback loop to maintain V_{CE} and J_C
TRANSISTOR AGING MODEL

- Observed Gummel characteristic
 - Moderate IC increase
 - Important IB increase
 - Moderate IC decrease (high J_C)
TRANSPORT AGING MODEL

- 2D Calibrated TCAD Hydrodynamic simulations
- Donor traps at E-B junction surface are responsible for the current increase
- Trap concentration increase linearly with stress time
TRANSISTOR AGING MODEL

- Trap density is not a compact model parameter: need saturation currents

\[
i_{iBEi} = I_{BEi} \left[\exp\left(\frac{v_{BE}'}{m_{BEi}V_T} \right) - 1 \right] + I_{REiS} \left[\exp\left(\frac{v_{BE}'}{m_{REi}V_T} \right) - 1 \right]
\]

\[
i_{f} = \frac{I_S}{Q_{p,T} / Q_{p0}} \left[\exp\left(\frac{v_{BE}'}{V_T} \right) - \exp\left(\frac{v_{BC}'}{V_T} \right) \right]
\]

- IS and IBEIS are extracted from post stress measurements
- IS and IBEIS follow the same linear evolution (as traps) with stress time
- IS and IBEIS can be advantageously used as variables of the aging model
TRANSISTOR AGING MODEL

Donor trap density can be modeled as a generation mechanism

\[\frac{dN_{trap}(t)}{dt} = G(T, J_C) \]

Same holds for IBEis and IS

\[\frac{dI_{BEis}(t)}{dt} = A_{IBEis}(T, J_C) \]
\[\frac{dI_S(t)}{dt} = A_{IS}(T, J_C) \]

Constant increasing rates follow an Arrhenius law

\[A_{IBEis}(T, J_C) = B_{IBEis} \left[\exp\left(\frac{-E_{IBEis}}{k_B T} \right) \right] J_C^{\alpha_1} \]
\[A_{IS}(T, J_C) = B_{IS} \left[\exp\left(\frac{-E_{IS}}{k_B T} \right) \right] J_C^{\alpha_2} \]

EIS, EIBEIS, BIBEIS, AIS are new model parameters
TRANSISTOR AGING MODEL

- Parameter extraction of IS and IBEIS (P2, P3, P4) (T5, T7, T10)
- Extract constant generation rates (AIS and AIBEIS)
- AIS and AIBEIS follow an Arrhenius law
- EIBEIS = 1.34 eV
- EIS = 1.5 eV
VERILOGA IMPLEMENTATION IN HiCuM MODEL

2 new nodes

\[\frac{dI_{BEIS}(t)}{dt} = A_{BEIS}(T, J_C) \]

\[\frac{dI_{S}(t)}{dt} = A_{S}(T, J_C) \]
module hic2_full_XDK (c,b,e,s,tnode, ibeis_out, is_out);

... branch (ibeis_out) br_ibeisout
branch (is_out) br_isout;

ibeis = V(br_ibeisout) +ibeis0;
is = V(br_isout) +is0;

aibeis = bibeis*exp(-eibeis/(P_K/P_Q)*Tdev)) *pow(jc, alpha1);
ais = bis*exp(-eis/(P_K/P_Q)*Tdev)) *pow(jc, alpha2);

I(br_ibeisout) <+ -aibeis;
I(br_ibeisout) <+ ddt(V(br_ibeisout));

I(br_isout) <+ -ais;
I(br_isout) <+ ddt(V(br_isout));
VERILOGA IMPLEMENTATION IN HiCuM MODEL

module hic2_full_XDK (c,b,e,s,tnode, ibeis_out, is_out);
...
branch (ibeis_out) br_ibeisout
branch (is_out) br_isout;

ibeis = V(br_ibeisout) +ibeis0;
is = V(br_isout) +is0;

aibeis = bibeis*exp(-ebieis/(`P_K`/`P_Q`)*Tdev)) *pow(jc,alpha1);
ais = bis*exp(-eis/(`P_K`/`P_Q`)*Tdev)) *pow(jc,alpha2);

I(br_ibeisout) <- atsf * aibeis;
I(br_ibeisout) <- ddt(V(br_ibeisout));
I(br_isout) <- atsf * ais;
I(br_isout) <- ddt(V(br_isout));

Simulation of degradations is too slow: 10000 years of CPU time !!!

ATSF is the Accelerating Time Scale Factor: new parameter

ATSF=3.6E13 100ns -> 1000 h
ATSF=3.15E15 100ns -> 10 years
METHODOLOGY VALIDATION

- Verification on base current (monitored during stress – 1000 h)
- Transistor T7
- Bias condition P4

Model is accurate at
Transistor level
METHODOLOGY VALIDATION

- Transimpedance Amplifier (TIA)

- External capacitor
- Reference voltage
- Low pass filter
- Low frequency (~DC) offset compensation amplifier
- Differential amplifier
- 50Ω output buffer
- Transimpedance input stage
- Cherry-Hooper amplifier
- Differential amplifier
- 50Ω output buffer
- INPUT
- V_{CC}
- V_{TIA}
- V_{REF}
- V_{FB}
- Differential OUTPUT
2 versions of the TIA available

- TIA (high DC gain – low cutoff frequency)
- TIA-HF (lower DC gain – Higher bandwidth)
- 22 samples submitted to accelerated aging for 1008 hours
- chuck temperature 70°C
- Tj up 125°C
Transient simulation of the TLIA

- ATSF=36e12 (100ns=10years)
- TEMP=100°C
- Differential output voltage (S-Sb)

Circuit degradation can be observed dynamically.

Altered parameters can be extracted at any time step.
METHODOLOGY VALIDATION
METHODOLOGY VALIDATION
Transient simulation of the TLIA

Steady state @ selected time step: run AC simulation with aged parameters
Using a script to generate “alter” statements gathered in a include file

Alter:AGINGalter0 var="l182.l395.Q1.AGED_RE0" VarValue=1.051097526541248e+00
Alter:AGINGalter1 var="l182.l395.Q1.AGED_ISO" VarValue=2.296752299864880e-05
Alter:AGINGalter2 var="l182.l395.Q1.AGED_IBEIS0" VarValue=2.720339978065819e-02
Alter:AGINGalter4 var="l182.l414.Q1.AGED_ISO" VarValue=2.477855478244199e-03
Alter:AGINGalter5 var="l182.l414.Q1.AGED_IBEIS0" VarValue=1.82290109996015e+00
Alter:AGINGalter7 var="l182.l407.Q1.AGED_ISO" VarValue=1.003050582644627e-04
Alter:AGINGalter8 var="l182.l407.Q1.AGED_IBEIS0" VarValue=1.021350703026095e-01
Alter:AGINGalter10 var="l182.l408.Q1.AGED_ISO" VarValue=8.399430332061722e-05
METHODOLOGY VALIDATION

S parameters |S21| up to 65GHz

- Measurements versus simulations (Agilent ADS)
- Excellent initial model
- Slightly pessimistic aging
- But fairly accurate predictions

Perl scripting is used to automate aged circuit simulation
RELIABILITY AWARE DESIGN EXAMPLE

- TIA transient simulations (Cadence spectre)
- No DC offset compensation loop

\[V_{IN} \rightarrow \text{Reference voltage} \rightarrow A_1 \rightarrow V_{OUT} \rightarrow V_{OUTb} \]

Main amplifier

VREF is constant

![Graph showing voltage over time](chart.png)
RELIABILITY AWARE DESIGN EXAMPLE

- TIA transient simulations (Cadence spectre)
- DC offset compensation loop with small gain

VREF can’t follow VTIA over time
RELIABILITY AWARE DESIGN EXAMPLE

- TIA transient simulations (Cadence spectre)
- DC offset compensation loop with high gain

VREF follows VTIA over time due to higher loop gain

Only the aging model allows understanding this phenomenon
CONCLUSION

- New method for device dynamic reliability simulation
- Straightforward initial implementation in simulators (VerilogA)
- But good convergence properties needs careful rework
- Available in a standard PDK (easy to adopt)
- Simulates complex interactions between stress conditions (bias/temperature) and device degradations
- Methodology is physics based
- Validated at transistor level (InP/InGaAs HBT process)
- Validated at circuit level (24 transistors TIA – working above 100GHZ – complex offset compensation loops)
- Allows reliability aware circuit design
- Shortens reliability improvement feedback loops
This work has been funded by the French National Agency for Research (ANR) via the ROBUST project.
REFERENCES

