Coupled extraction of RE and RTH
based on DC output curves

A. Pawlak, M. Schroter, S. Lehmann

andreas.pawlak@tu-dresden.de

Bipolar Arbeitskreis 2013, Frankfurt (Oder)
Outline

• Introduction
• Method
• Results
• Summary
Introduction

• Several methods for R_E and R_{TH} extraction exist
 • Most for R_E based on S-parameters

• Also combined methods exist

• Here, a new method based on a simple self-heating model is presented
 • Only based on DC output curves

• Basic concept
 • Calculation of temperature increase from $I_B(V_{BE})$ values
 • Calculation of R_E from dissipated power and difference of V_{CEi} and V_{CE}
Method

Base current

• In forward active mode $I_B = f(V_{BEi}, T, V_{BCi})$

• $V_{BEi} = V_{BE} - I_E^* R_E - I_B^* R_B$

• Known parameters: $I_{BES}(T_0), m_{BE}, \zeta_{BET}, V_{gB} \rightarrow I_{BES}(T)$

• Measured values: $V_{BE}, I_B, I_E(= I_C)$

Self-heating

• Simplified model: $\Delta T = I_C^* V_{CEi}^* R_{TH}$

• $V_{CEi} = V_{CE} - I_E^* R_E - I_C^* R_{Cx}$

• Measured values: $V_{CE}, I_E(= I_C)$
• Measurement at fixed I_C (using a control script adjusting V_{BE})
 • or forced I_B, if temperature dependence of beta is low

• Assuming I_B only consists of I_{BE}, ΔT can be calculated with known R_E from measured $I_B(V_{BE})$

\[
I_B = I_{BEs}(T) \exp\left(\frac{V_{BE} - I_E R_E}{m_{BE} V_T}\right) \quad \text{(solved for T with Newton-method)}
\]

• Since fixed I_C (assuming $R_{TH}(T) = \text{const}$ and $R_E(T) = \text{const}$)

\[
\frac{\Delta T}{I_C} = V_{CEi} R_{TH} = (V_{CE} - I_E R_E) R_{TH} = V_{CE} R_{TH} - I_E R_E R_{TH}
\]

\[
\Rightarrow \Delta T \sim V_{CEi} \quad \text{and} \quad \Delta T = f_{lin}(V_{CE})
\]

• Since generally $R_{TH}(T) \neq \text{const}$ and $R_E(T) \neq \text{const} \Rightarrow$ no ideally linear function \Rightarrow see results
• Linear extrapolation of ΔT to 0 \Rightarrow $\Delta T(V_{CE0}) = 0$

• In high current region, ΔT is wrong due to additional base current components
• BUT: R_E is not known

• R_E can be calculated from V_{CE0}

$$R_E = \frac{V_{CE0}}{I_E}$$

• ΔT and V_{CE0} are calculated by using an initial value of R_E

• Defining $R_{E, temp}$ for calculating ΔT and $R_{E, extr}$ from V_{CE0}

$$R_{E, temp} \Rightarrow \Delta T_{extr} \Rightarrow V_{CE0} \Rightarrow R_{E, extr}$$

$$I_B = I_{BEs}(T_{extr}) \exp\left(\frac{V_{BE} - I_E R_{E, temp}}{m_{BE} V_T, extr}\right), \quad R_{E, extr} = \frac{V_{CE0}}{I_E}$$

=> for one $R_{E, temp} \Rightarrow R_{E, temp} = R_{E, extr} = R_E$
• Automated optimization for R_E
 • Using an iteration
 • Convergence criteria change of R_E less than a specified value

• Using Newton-like iteration
• Using some kind of bisection method

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Assumed R_E</th>
<th>Calculated R_E</th>
<th>Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.000000</td>
<td>96.613437</td>
<td>34</td>
</tr>
<tr>
<td>02</td>
<td>1.000000</td>
<td>46.972462</td>
<td>35</td>
</tr>
<tr>
<td>03</td>
<td>2.000000</td>
<td>-5.898955</td>
<td>36</td>
</tr>
<tr>
<td>04</td>
<td>1.000000</td>
<td>46.972462</td>
<td>37</td>
</tr>
<tr>
<td>05</td>
<td>1.100000</td>
<td>41.785187</td>
<td>38</td>
</tr>
<tr>
<td>06</td>
<td>1.200000</td>
<td>36.569793</td>
<td>39</td>
</tr>
<tr>
<td>07</td>
<td>1.300000</td>
<td>31.326985</td>
<td>40</td>
</tr>
<tr>
<td>08</td>
<td>1.400000</td>
<td>26.066249</td>
<td>41</td>
</tr>
<tr>
<td>09</td>
<td>1.500000</td>
<td>20.779694</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>1.600000</td>
<td>15.474439</td>
<td>43</td>
</tr>
</tbody>
</table>

Final value after R_E iteration

Starting point $R_{E, temp}=0$
Influence of R_{Cx}

- $V_{CEi} = V_{CE} - I_E R_E - I_C R_{Cx}$

- Two methods:
 - Using known R_{Cx} from test structures
 - R_{Cx} including in extraction

![Graph showing weakly dependent and dependent behavior of R_{E} and R_{th} with R_{Cx}]
• Using two different forced I_B or two constant I_C => I_{C1} and I_{C2}

• Same P_{diss} (=> same ΔT) for both
 • Choosing a fixed ΔT and $I_{C1} \neq I_{C2}$ => $V_{CE1} \neq V_{CE2}$
 • But same R_E, R_{Cx} and R_{TH} (as function of T)
• Calculation of R_{Cx} from temperature increases

\[P_{diss1} = P_{diss2} \]

\[I_C1(V_{CE1} - R{EIF1} - R_{Cx}Ic1)R_{TH} = I_C2(V_{CE2} - R{EIF2} - R_{Cx}Ic2)R_{TH} \]

\[R_{Cx} = \frac{I_C1V_{CE1} - I_C2V_{CE2} - R{EIF1} - I_C1I{EIF1} - I_C2I{EIF2}}{I^2_C1 - I^2_C2} \]

• Numerical optimization generally fails for experimental results

• Influence of R_{Ci}
 • Voltage drop for $V_{BC} <$ punch-through
 • To be investigated
Results

• Comparison versus model

• Test cases:
 • Ideal case: \(R_E(T) = \text{const}, \ R_{TH}(T) = \text{const}, \ R_C = R_B = 0 \)
 • External resistances: \(R_E(T) = \text{const}, \ R_{TH}(T) = \text{const}, \ R_C \neq 0, \ R_B \neq 0 \)
 • T-dep RE: \(R_E(T) \neq \text{const}, \ R_{TH}(T) = \text{const}, \ R_C \neq 0, \ R_B \neq 0 \)
 • Realistic case: \(R_E(T) \neq \text{const}, \ R_{TH}(T) \neq \text{const}, \ R_C \neq 0, \ R_B \neq 0 \)

• \(R_C \) is assumed to be known in all cases

• Always four different values for \(I_B \)
 • Mean value of \(R_E \) and \(R_{TH} \) from each IB used
Ideal case

External resistances
Temperature dependent R_E

Realistic case
Comparison of results

<table>
<thead>
<tr>
<th>Test case</th>
<th>R_E (model)</th>
<th>R_E (extract)</th>
<th>ζ_{RE} (model)</th>
<th>ζ_{RE} (extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>3.023 Ω</td>
<td>2.97 Ω</td>
<td>0</td>
<td>-0.006</td>
</tr>
<tr>
<td>Ext. res</td>
<td>3.023 Ω</td>
<td>3.0 Ω</td>
<td>0</td>
<td>0.016</td>
</tr>
<tr>
<td>T-dep. R_E</td>
<td>3.023 Ω</td>
<td>2.99 Ω</td>
<td>-0.96</td>
<td>-0.96</td>
</tr>
<tr>
<td>Realistic</td>
<td>3.023 Ω</td>
<td>3.0 Ω</td>
<td>-0.96</td>
<td>-0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test case</th>
<th>R_{TH} (model)</th>
<th>R_{TH} (extract)</th>
<th>ζ_{RTH} (model)</th>
<th>ζ_{RTH} (extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>1.98 K/mW</td>
<td>1.92 K/mW</td>
<td>0</td>
<td>-0.107</td>
</tr>
<tr>
<td>Ext. res</td>
<td>1.98 K/mW</td>
<td>1.92 K/mW</td>
<td>0</td>
<td>-0.11</td>
</tr>
<tr>
<td>T-dep. R_E</td>
<td>1.98 K/mW</td>
<td>2.02 K/mW</td>
<td>0</td>
<td>-0.078</td>
</tr>
<tr>
<td>Realistic</td>
<td>1.98 K/mW</td>
<td>2.06 K/mW</td>
<td>0.5</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Measurements

- Meaningful scaling results
Summary

• Pros
 • Simple measurements, DC forced I_B
 • Robust => without R_C in the iteration always converges
 • Based on model equations => final model will agree well

• Cons
 • Temperature dependence of R_E and R_{TH} affects linear fit of $\Delta T(V_{CE})$
 • R_{Cx} should be known in advance
 • Based on model equations => physical value of extracted parameters dependent on model equations for self-heating
 • Limited range during extraction
 • V_{BE} large enough for self-heating but below high-current effects
 • V_{CE} between saturation and breakdown => linear fit

• To do: evaluation for large geometry and technology range
Acknowledgements

• European Commission within the FP7-IP DOTSEVEN (ICT-316755)

• German Research Foundation (DFG) in the Collaborative Research Center 912 "Highly Adaptive Energy-Efficient Computing"

• German Ministry of Research and Education (BMBF) within the CoolSilicon Excellence Cluster