Investigation on Bias Dependence of Critical Current I_{CK} in HICUM Models

Didier Céli

27th ArbeitsKreis Bipolar
Crolles, France, October 24, 2014
Outline

- Motivation
- Components of I_{CK}
- I_{CK} issue at V_{LIM}
- Proposal and validation
- Summary
Motivation

- Study of the bias dependence of the critical current I_{CK} after to have observed a bump on the output characteristics (quasi-saturation region) with both HICUM/L2 and HICUM/L0

- In HICUM models (Level 2 and Level 0), the critical current I_{CK} characterizes the onset of high-injection effects in the collector
 - Quasi-saturation effect
 - Kirk effect
I_{CK} formulation

- From HICUM/L2 v2.31 (similar equation in HICUM/L0, the bias dependence of I_{CK} is given by

\[
I_{CK} = \frac{V_{Ceff}}{R_{Cl0}} \cdot \frac{1}{1 + \left(\frac{V_{Ceff}}{V_{LIM}} \right)^{\frac{1}{D_{ELCK}}} \left(1 + \frac{V_{Ceff}}{V_{LIM}} \right)^{\frac{1}{D_{ELCK}}}} \cdot \left(\frac{V_{Ceff} - V_{LIM}}{V_{PT}} + \sqrt{\left(\frac{V_{Ceff} - V_{LIM}}{V_{PT}} \right)^2 + \epsilon} \right)
\]

- The smoothing function $1 + \frac{V_{Ceff} - V_{LIM}}{V_{PT}} + \sqrt{\left(\frac{V_{Ceff} - V_{LIM}}{V_{PT}} \right)^2 + \epsilon}$, with smoothing factor $\epsilon = 0.001$, is used to connect the cases of low and high-electric fields in the collector.

- V_{Ceff} is the *effective* collector voltage defined by

\[
V_{Ceff} = \left(\frac{V_{C} - V_{T}}{V_{T}} + \left(\frac{V_{C} - V_{T}}{V_{T}} \right)^2 + 1.921812 \right) \cdot V_{T}
\]

with $V_{C} = V_{CEi} - V_{CES}$
The bias dependence of I_{CK} is characterized by the following model parameters:

- R_{CI0} internal total vertical collector resistance under the emitter
- V_{LIM} voltage separating ohmic and saturation region of carrier velocity $V_{LIM} = E_{LIM} \cdot W_{Ci}$
- V_{PT} collector punch-through voltage $V_{PT} = \frac{q \cdot N_{Ci}}{2\varepsilon_{si}} \cdot W_{Ci}$
- V_{CES} collector-emitter saturation voltage
- D_{ELCK} field dependent mobility in the collector

From (1), the bias dependence of the critical current I_{CK} can be split in 3 parts:

- I_{CKL}, I_{CK} at low collector voltage
- I_{CKHL}, I_{CK} at high collector voltage but lower than V_{LIM}
- I_{CKHH}, I_{CK} at high collector voltage greater than V_{LIM}
From (1), I_{CKL} can be written:

\[I_{CKL} \approx \frac{V_{\text{Ceff}}}{R_{C10}} = \frac{V_{\text{CEi}} - V_{\text{CES}}}{R_{C10}} \quad V_{\text{CEi}} > V_T \]

Model parameters:

\[
\begin{align*}
V_{\text{CES}} &= 1 \text{ mV} \\
R_{C10} &= 10 \Omega \\
V_{\text{LIM}} &= 0.5 \text{ V} \\
V_{\text{PT}} &= 1 \text{ V} \\
D_{\text{ELCK}} &= 2
\end{align*}
\]
\(I_{CK} \) at high collector voltage with \(V_{Ce} < V_{LIM} \)

- From (1), \(I_{CKL} \) can be written

\[
I_{CKL} \approx \frac{V_{CEi} - V_{CES}}{R_{Cl0}} \cdot \frac{1}{1 + \left(\frac{V_{CEi} - V_{CES}}{V_{LIM}} \right)^{D_{ELCK}^{D_{ELCK}}}} \quad V_{CEi} < V_{LIM}
\]

- Model parameters

\[
\begin{align}
V_{CES} &= 1 \text{ mV} \\
R_{Cl0} &= 10 \Omega \\
V_{LIM} &= 0.5 \text{ V} \\
V_{PT} &= 1 \text{ V} \\
D_{ELCK} &= 2
\end{align}
\]
\(I_{CK} \) at high collector voltage with \(V_{C_{eff}} > V_{LIM} \)

- From (1), \(I_{CKHH} \) can be written

\[
I_{CKHH} \approx \frac{V_{LIM}}{R_{CI0}} \times \left\{ 1 + \frac{V_{CEi} - V_{CES} - V_{LIM}}{V_{PT}} \right\}
\]

\(V_{CEi} > V_{LIM} \)

- Model parameters

\[
\begin{align*}
V_{CES} &= 1 \text{ mV} \\
R_{CI0} &= 10 \Omega \\
V_{LIM} &= 0.5 \text{ V} \\
V_{PT} &= 1 \text{ V} \\
D_{ELCK} &= 2
\end{align*}
\]
Bias dependence of I_{CK} vs. V_{CEi}

$$I_{CK} = \frac{V_{Ceff}}{R_{Cl0}} \cdot \frac{1}{1 + \left\{ \frac{V_{Ceff}}{V_{LIM}} \right\}^{D_{ELCK}}} \cdot \left\{ 1 + \left(\frac{V_{Ceff} - V_{LIM}}{V_{PT}} \right)^{\frac{1}{2}} \right\}^{\frac{V_{Ceff} - V_{LIM}}{V_{PT}}} + \epsilon$$

- Model parameters
 - $V_{CES} = 1 \text{mV}$
 - $R_{Cl0} = 10 \Omega$
 - $V_{LIM} = 0.5 \text{V}$
 - $V_{PT} = 1 \text{V}$
 - $D_{ELCK} = 2$

![Graph showing bias dependence of I_{CK} vs. V_{CEi}](image)
Bias dependence of I_{CK} vs. V_{CEi}

- Model issue
 - Inflection point (bump) at $V_{CEi} = V_{LIM}$ (connection between I_{CKHL} and I_{CKHH})
 - This bump is also visible on output characteristics in the quasi-saturation region (see slide 2)
A possible solution to remove this bump is to increase the smoothing factor ε of equation (1)

- ε set to 0.1 instead of 0.001
Proposal and validation

- Same effect on the output characteristics, the increase of ε allows to correct the bump in quasi-saturation region.
Proposal and validation

- Impact on f_T characteristics

Similar (or even better) accuracy are obtained with increasing of ε (I_{CK} parameters re-extracted)

- Comments to HICUM users
 - Due to the strong impact of the self-heating, direct extraction of I_{CK} parameters, as described in literature, is very difficult, or even impossible...
 - Alternative solution?
The critical current I_{CK} can be split in 3 components

- One at low V_{CEi}
- A second at high V_{CEi} but lower than V_{LIM}
- And a third at high V_{CEi} greater than V_{LIM}

We clearly shown that the smoothing function used for the transition between V_{CEi} lower than V_{LIM} and V_{CEi} greater than V_{LIM} is not enough soft.

We propose to increase the smoothing factor ε in order to remove the bump on the I_{CK} vs. V_{CEi} characteristics.

- with the possibility (to be discussed) to add a model parameter (A_{CK}) which could be adjusted by users like A_{HC}

Doing that, the bump often observed on I_C vs. V_{CE} characteristics, after the optimization of I_{CK} parameters, is also no more visible.

Users and developers feedback requested for approval and implementation in next HICUM releases for both HICUM/L2 and HICUML/L0