Temperature Dependence of the Relevant Sheet Resistances in SiGe Heterojunction Bipolar Transistors

Fischer, Gerhard

November 25th, 2016
AK Bipolar, München
Agenda

1. Introduction
2. Physics of Semiconductors Conductivity
3. Temperature Dependence of Resistances in HBT Models
4. Sheet Resistance Measurements
5. Results
6. Summary

November 25th, 2016
Introduction

Already at university we learn:

Semiconductors are “hot” conductors – contrary to metals!

But is it really so simple?

In our SiGe heterojunction bipolar transistor (HBT) models:

\[R_*(T) = R_*(T_{NOM}) \cdot \left(\frac{T}{T_{NOM}} \right)^\zeta_{R*} \]

with temperature coefficient \(\zeta_{R*} = 0 \) in default \(\rightarrow \) no dependence of \(R \) on \(T \)!

The actual series resistances to model are

- Emitter resistance \(R_E \rightarrow \zeta_{RE} \)
- Internal base resistance \(R_{bi} \rightarrow \zeta_{RBI} \)
- External base resistance \(R_{bx} \rightarrow \zeta_{RBX} \)
- External collector resistance \(R_{cx} \rightarrow \zeta_{RCX} \)

Now, how do we get the zetas?

- Just fine tuning of HBT characteristics ?
- Or check \(R(T) \) of special sheet resistance test structures in range \([-40^\circ C...125^\circ C]\) ?
Temperature dependence of resistivity in semiconductors:

\[\rho(T) = \frac{1}{q\left(\mu_n(T)n(T) + \mu_p(T)p(T)\right)} \]

- For intrinsic semiconductors: \(n_i \propto T^{1.5} \cdot \exp\left[\frac{-E_G(T)}{2k_B T}\right] \)
- \(n_i(T) \) is dominated by \(\exp\left[-\frac{1}{T}\right] \)
Physics of Semiconductors Conductivity

Temperature dependence of resistivity in semiconductors:

\[\rho(T) = \frac{1}{q(\mu_n(T)n(T) + \mu_p(T)p(T))} \]

- For doped semiconductors:
 - High T (>100°C): \(n_i \) dominates
 - Low T (<-100°C): freeze out of dopants
 - Medium T: dopants fully activated \(\rightarrow n \approx \text{constant} \)

\[N_D = 10^{15} \text{ cm}^{-3} \]

Sze, Sem. Dev., 1985
Temperature dependence of resistivity in semiconductors:

\[\rho(T) = \frac{1}{q(\mu_n(T)n(T) + \mu_p(T)p(T))}, \mu(T) = q \frac{\tau_c(T)}{m} \]

- Mean collision time:
 \[\frac{1}{\tau_C} = \frac{1}{\tau_{C,\text{lattice}}} + \frac{1}{\tau_{C,\text{impurity}}} \]

- At high temperatures and low doping lattice scattering dominates:
 \[\mu(T) \propto T^{-\frac{3}{2}} \]

- At low temperatures and high doping impurity scattering dominates:
 \[\mu(T) \propto T^{+\frac{3}{2}} \]
Conductivity of Semiconductors

Temperature dependence of resistivity in semiconductors:

\[\rho(T) = \frac{1}{q(\mu_n(T)n(T) + \mu_p(T)p(T))}, \mu(T) = q \frac{\tau_c(T)}{m} \]

Altogether \(\rho(T) \) looks like:

http://www.physik.uni-wuerzburg.de/einfuehrung/SS06/13%20Leitung%20Festkoerper.pdf

http://www.ihp-microelectronics.com | © 2016 - All rights reserved | Temperature Dependence Resistances – AK Bipolar | November 25th, 2016
Temperature Dependence of Resistances in HBT Models

Examples from different models of high-performance SiGe HBTs:

\[R^*_T (T) = R^*_T (T_{NOM}) \cdot \left(\frac{T}{T_{NOM}} \right)^{\zeta_{R^*}} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Model A (HICUM)</th>
<th>Model B (HICUM)</th>
<th>Model C (VBIC)</th>
<th>Model D (HICUM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ_{RBi}</td>
<td>0.30</td>
<td>0.5</td>
<td></td>
<td>-1.0</td>
</tr>
<tr>
<td>ζ_{RBx}</td>
<td>0.06</td>
<td>0.3</td>
<td>0.4</td>
<td>-0.5</td>
</tr>
<tr>
<td>ζ_{RCx}</td>
<td>-0.03</td>
<td>0.0</td>
<td>0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>ζ_{RE}</td>
<td>-0.96</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

- Models B and C belong to SG13, models A and D to other HBTs.
- ζ_{RE} is always negative (-0.5 ... -1.0), others vary between (-1.0 0.5)
Sheet Resistance Measurements

Kelvin measurement test structure:

Sheet resistance $R_S = R \frac{W}{L}$

For statistics: RS measurements at 9 dies.
Sheet Resistance Measurements

4 types of layers:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPLYA</td>
<td>Emitter poly-Si on p-doped epi base</td>
<td>$\rightarrow ??$</td>
</tr>
<tr>
<td>EPLYX</td>
<td>Emitter poly-Si on oxide (no Emitter window)</td>
<td>$\rightarrow \zeta_{RE}$</td>
</tr>
<tr>
<td>BPLY</td>
<td>p$^+$-doped external base on oxide</td>
<td>$\rightarrow \zeta_{RBx}$</td>
</tr>
<tr>
<td>CX</td>
<td>n$^+$ collector under oxide</td>
<td>$\rightarrow \zeta_{RCx}$</td>
</tr>
</tbody>
</table>

Example technology:

IHP’s SG13 high-performance HBT ($f_T/f_{max} = 250$GHz/300GHz)
Results I

Temperature dependence of external base (BPLY) and collector (CX):

Models:
- ζ_{RBx}: 0.1…0.4 \rightarrow o.k.
- ζ_{RCx} around 0 \rightarrow coefficient to low?!
Results II

Temperature dependence of EPLA and poly-crystalline emitter layer (EPLYX):

Temperature dependence of EPLA and poly-crystalline emitter layer (EPLYX):

\[R_S = R_{S,300K} \times \left(\frac{T}{300} \right)^{0.49} \]

Does result represent \(\zeta_{RBI} \) ?? Then models A-C o.k.

\[R_S = R_{S,300K} \times \left(\frac{T}{300} \right)^{-0.28} \]

Models: \(\zeta_{RE} < -0.5 \) \(\rightarrow \) coefficient to low?!
The temperature dependence of semiconductor sheet resistance not well defined in the technologically most interesting temperature range around 300K.

Models provide temperature coefficients ζ_{RE}, ζ_{RBi}, ζ_{RBx}, and ζ_{RCx}. Their default value is 0.

$R_S(T)$ are best fitted linearly.

Measurement of sheet resistances representing in the temperature range [-40°C...125°C] leads to

<table>
<thead>
<tr>
<th>ζ_{RE}</th>
<th>ζ_{RBi}</th>
<th>ζ_{RBx}</th>
<th>ζ_{RCx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Thank you for your attention!

Fischer, Gerhard

IHP – Innovations for High Performance Microelectronics
Im Technologiepark 25
15236 Frankfurt (Oder)
Germany
Phone: +49 (0) 335 5625 574
Fax: +49 (0) 335 5625 327
Email: gerhard.fischer@ihp-microelectronics.com

www.ihp-microelectronics.com