POWER MOS MODELING FOR COMMUTATION CELL APPLICATIONS
Power MOS Modeling

Challenge

- Simulation of power modules with (SiC) MOSFETs
- Range up to 1kV/100A per half bridge

- Accurate calculation of
 - static & dynamic losses
 - current/voltage transients
 - Oscillations

- Compatibility between different simulators
 - Pspice, Saber, Ltspice, Spectre
Power MOS Modeling

Procedure

- Transistor model refers to bare die
- (Electrical) setup parasitic circuitry from Ansys Q3D
- Circuit models for gate control etc.
- Simulation currently with Pspice
Power MOS Modeling
Models for Discrete Power MOS Transistors

- Available from different vendors
- Mainly subcircuits in Pspice syntax
- Different levels of accuracy

▶ Tradeoff between model accuracy and convergence behaviour; main issues:
 ▶ Modelling of Drain Current
 ▶ RDSon vs Temp, RDSon vs ID
 ▶ Body Diode Modelling
 ▶ Capacitance Modelling
 ▶ Self Heating
Power MOS Modeling

Modeling Regions

- Channel
- Drain Resistance
- Capacitances
- Body Diode
Power MOS Modeling

Channel Model

► Which complexity is needed?
► Available vendor models for
 ► Si: mainly MOS Level3 based
 ► SiC: only behavioural approach ID=f(VGS, VDS, Temp)

► Behavioural modelling (i.e. algebraic functions in controlled sources etc.)
 ► Convergence?

► Usage of standard models (Level3, BSIM)
 ► Accuracy?
 ► How to de-activate unused effects (especially diodes)?
Power MOS Modeling

Capacitances

- Strong VDS dependence of CGD
- Datasheets do not show CGD for VGD>0
- Vendors use behavioural or table models

- Vendor Models: CGS=const

- “Classical” PN junction approach for CDS ok also for SiC?

\[
\begin{align*}
\text{Ciss} &= \text{CGS} + \text{CGD} \\
\text{Crss} &= \text{CGD} \\
\text{Coss} &= \text{CDS} + \text{CGD}
\end{align*}
\]
Body Diode

- Vendor SiC models: partly behavioural, partly standard SPICE diode model
- Too rough (if any) reverse recovery modelling (is a better one needed for SiC?)
- QRR/QOSS separation
Power MOS Modeling

Self Heating

- “Classical” Spice Approach: Fixed device temperature (.TEMP, DTEMP…) ➔ no self heating modelled

- Self heating can be modelled by additional symbol pin, representing junction temperature as voltage
 - Connected to current source controlled by power dissipated in the device
 - Connected to thermal network to be extracted from the mechanical setup

- This voltage controls additional voltage/current sources in the model circuit (e.g. for modelling the threshold voltage shift with temperature

- Sacrifice: Convergence!
Power MOS Modeling
SiC MOSFET Model Proposal

► Level 3 for channel model
► Additional constant drain resistance
► Constant CGS
► Behavioural model for CGD needed
► Standard diode model for body diode (incl. CDS) + behavioural addition for reverse recovery needed
► “thermal” pin