Extension of HICUM/L2 Avalanche Model at High Current: Proposal

31st Working Group Bipolar
November 08-09, 2018, Frickenhausen

Didier Céli, Mathieu Jaoul, Thomas Zimmer (IMS Bordeaux)
Overview

- To the designer requests, extension of HICUM/L2 avalanche model at high-injection levels
 - For more details see [1]

- Impact of the new model parameters on electrical characteristics

- Test and validation with various circuit simulators

- Verilog-A code is available on request
Motivation

- The increasing of RF performances (f_T, f_{max}) of HBTs leads to a decreasing of the breakdown voltages (BV_{CBO}, BV_{CEO})

- In consequence, designers are often obliged to bias the transistor beyond the BV_{CEO} (BV with open base, never happens in real circuit)

- They ask for a better model beyond BV_{CEO}

- It is especially the case for HV HBTs, where the high-injection effects are important because of the low doped collector
 - Variation of BV_{CEO} with current densities
 - Not taken into account with the existing HICUM/L2 model

![Modulation of BV_{CEO} with current densities for HV device](image)

- Measurement (circles)
- HICUM/L2 (dashed lines)
- Proposal (lines)
Model equations (1/2)

Weak avalanche model

- HICUM/L2 revision before 2.4.0

\[I_{AVL} = g \cdot I_T \]

(1)

- \(I_T \) is the transfer current

- The avalanche factor \(g \) is given by

\[g = F_{AVL} \cdot (V_{DCI} - V_{B'C'}) \cdot e^{\frac{-Q_{AVL}}{(V_{DCI} - V_{B'C'}) \cdot C_{JCI}}} \]

(2)

- This model allows to model accurately the \(BV_{CEO} \) of the transistor at low and medium current densities.

Strong avalanche model

- From HICUM/L2 2.4.0

- Allows to accurately model the avalanche current up to (or close to) the \(BV_{CBO} \) of the transistor

- Safeguard for designers when reaching the \(BV_{CBO} \).

\[I_{AVL} = \frac{g}{1 - K_{AVL} \cdot g} \cdot I_T \]

(3)

- The model parameter \(K_{AVL} \) allows to turn off the strong avalanche effect \((K_{AVL} = 0) \), or to fine-tune the avalanche current in order to have the good value for \(BV_{CBO} \) \((K_{AVL} \in (0, 3]) \) of the transistor at low and medium current densities.
Prevention of numerical overflow

To prevent numerical issue, the denominator of (3) is limited to values greater than zero using the smoothing function

\[
1 - K_{AVL} \cdot g + \sqrt[2]{\left(1 - K_{AVL} \cdot g\right)^2 + 0.01} \over 2
\]

(4)
The 2 previous formulations (1) and (3) are only valid at low and medium current densities. At high-current densities, the injected electrons \(n \), in the collector can no longer be neglected. The result is a modulation of the electric field, in the vertical collector under the emitter, with the collector current according to the Poisson’s equation

\[
\frac{\partial E}{\partial x} = \frac{q \cdot (N_{epi} - n)}{\varepsilon_{si}}
\]

(5)

- Example of electric field variation in case of constant collector doping and \(V_{CB} = 2V \).
Assuming saturation velocity (we are close to BV_{CEO}, the electric field is strong enough), (5) can be re-written

$$\frac{\partial E}{\partial x} = \frac{q \cdot N_{epi}}{\varepsilon_{si}} \cdot \left\{ 1 - \frac{I_T}{I_{LIM}} \right\}$$ \hspace{1cm} (6)

- where I_{LIM} corresponds to the transfer current when $n = N_{epi}$ (slope of the electric field $= 0$)
 $$I_{LIM} = q \cdot N_{epi} \cdot v_{sn} \cdot A_E$$ \hspace{1cm} (7)

Solving the Poisson’s equation (6), for $I_T < I_{LIM}$ and $I_T > I_{LIM}$, we can demonstrate [1], that the avalanche factor g (2) must be corrected by a factor F_{COR} (see (12) and (13) slide 8)

$$F_{CORL} = \sqrt{1 - \frac{I_T}{I_{LIM}}} \quad \text{for} \quad I_T < I_{LIM}$$

$$F_{CORH} = \sqrt{\frac{I_T}{I_{LIM}} - 1} \quad \text{for} \quad I_T > I_{LIM}$$ \hspace{1cm} (8)

In case of non constant collector doping, I_{LIM} is approximated by

$$I_{LIMeff} = D_{AVL} \cdot I_{LIM} + H_{AVL} \cdot I_T$$ \hspace{1cm} (9)

- where D_{AVL} and H_{AVL} are two additional model parameters.
- $D_{AVL} = 0$ is used as a flag to turn off the new formulation.
In order to connect F_{CORL} and F_{CORH}, the following function is used [1]

$$F_{COR} = \sqrt{S_M \cdot \ln \left(\frac{C_{AVL} \cdot C_{JCl}}{S_M \cdot C_{JCl0}} \cdot 2 + 2 \cdot \cosh \left(\frac{1 - \frac{I_T}{I_{LIMeff}}}{S_M} \right) \right)}$$

where S_M and C_{AVL} are 2 smoothing parameters (10)
Extension at high-injection level (4/4)

- Final expression of the avalanche current at low and high \(V_{CB} \), at low and high-currents

\[
I_{AVL} = \frac{g}{1 - K_{AVL} \cdot g} \cdot I_T
\] \hspace{1cm} (11)

with

\[
g = F_{AVL} \cdot (V_{DCI} - V_{B'C'}) \cdot e^{F_{COR} \cdot (V_{DCI} - V_{B'C'}) \cdot C_{JCI}}
\] \hspace{1cm} (12)

and the correction factor

\[
F_{COR} = \sqrt{S_M \cdot \ln \left(e^{\frac{c_{AVL} \cdot C_{JCI}}{S_M \cdot C_{JCI0}}} - 2 + 2 \cdot \cosh \left(\frac{1 - \frac{I_T}{I_{LIMeff}}}{S_M} \right) \right)}
\] \hspace{1cm} (13)

with

\[
I_{LIMeff} = D_{AVL} \cdot I_{LIM} + H_{AVL} \cdot I_T
\] \hspace{1cm} (14)

- Comments
 - \(I_{LIM} \) is not an HICUM model parameter. It can be calculated from (see Appendix A)

\[
I_{LIM} = \frac{V_{LIM}}{R_{CI0}}
\] \hspace{1cm} (15)
Impact of D_{AVL} on F_{COR}

- D_{AVL} allows to enable ($D_{AVL} \neq 0$) or disable ($D_{AVL} = 0$) the high-injection effects on the avalanche current.
- If $D_{AVL} \neq 0$, D_{AVL} allows to shift the abscissa of the stationary point of $F_{COR}(I_T)$ characteristic, which is by default ($D_{AVL} = 1$) at $I_T = I_{LIM} = V_{LIM}/R_{Cl0}$

<table>
<thead>
<tr>
<th>H_{AVL}</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_M</td>
<td>0.1</td>
</tr>
<tr>
<td>C_{AVL}</td>
<td>0.1</td>
</tr>
</tbody>
</table>

![Graph showing the impact of D_{AVL} on F_{COR}]
Impact of H_{AVL} on F_{COR}

- H_{AVL} has two effects
 - It shifts the abscissa of the stationary point of the $F_{COR}(I_T)$ characteristics (like D_{AVL}), which is by default ($H_{AVL} = 0$) at $I_T = I_{LIM} = V_{LIM}/R_{Cl0}$
 - It changes the slope of $F_{COR}(I_T)$ in the high-current region ($I_T > I_{LIMeff}$)

<table>
<thead>
<tr>
<th>D_{AVL}</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_M</td>
<td>0.1</td>
</tr>
<tr>
<td>C_{AVL}</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Impact of C_{AVL} on F_{COR}

- C_{AVL} allows to fix the minimum value of F_{COR} at $I_T = I_{LIMeff}$
- Increasing C_{AVL}, increases the minimum value of F_{COR}

<table>
<thead>
<tr>
<th>D_{AVL}</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{AVL}</td>
<td>0</td>
</tr>
<tr>
<td>S_M</td>
<td>0.1</td>
</tr>
</tbody>
</table>

![Graph showing the impact of C_{AVL} on F_{COR}]
Impact of S_M on F_{COR}

- S_M is a smoothing factor allowing to connect F_{CORL} and F_{CORH} at $I_T = I_{LIMeff}$
- We suggest to use the default value $S_M = 0.1$

<table>
<thead>
<tr>
<th>D_{AVL}</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{AVL}</td>
<td>0</td>
</tr>
<tr>
<td>C_{AVL}</td>
<td>0.1</td>
</tr>
</tbody>
</table>

![Graph showing the impact of S_M on F_{COR}]
Verilog-A code and model parameters

- Verilog-A available on request for testing

 didier.celi@st.com

- Base-collector avalanche current parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Default</th>
<th>Range</th>
<th>Unit</th>
<th>Factor</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAVL</td>
<td>Factor for avalanche current</td>
<td>0</td>
<td>[0:inf]</td>
<td>V^{-1}</td>
<td></td>
<td>HICUM/L2 v2.4.0</td>
</tr>
<tr>
<td>QAVL</td>
<td>Charge for avalanche current</td>
<td>0</td>
<td>[0:inf]</td>
<td>C</td>
<td>M</td>
<td>HICUM/L2 v2.4.0</td>
</tr>
<tr>
<td>KAVL</td>
<td>Flag and factor for turning strong avalanche on or off</td>
<td>0</td>
<td>[0:3]</td>
<td>-</td>
<td></td>
<td>HICUM/L2 v2.4.0</td>
</tr>
<tr>
<td>DAVL</td>
<td>Correction factor for I_{LIM} (case of non-uniform collector doping)</td>
<td>0</td>
<td>[0:inf]</td>
<td>-</td>
<td></td>
<td>new</td>
</tr>
<tr>
<td>HAVL</td>
<td>Factor for current dependence of I_{LIM} (case of non-uniform collector doping)</td>
<td>0</td>
<td>[0:10]</td>
<td>-</td>
<td></td>
<td>new</td>
</tr>
<tr>
<td>SM</td>
<td>Smoothing factor to link F_{COR} equations before and after I_{LIMeff}</td>
<td>0.1</td>
<td>(0:1)</td>
<td>-</td>
<td></td>
<td>new</td>
</tr>
<tr>
<td>CAVL</td>
<td>Factor to define the value of F_{COR} at I_T = I_{LIMeff}</td>
<td>1</td>
<td>[0:10]</td>
<td>-</td>
<td></td>
<td>new</td>
</tr>
</tbody>
</table>
The new model formulation was implemented in Verilog-A code from the version 2.4.0 of HICUM/L2

The new model has been extensively tested with commercial simulator (ELDO) and open source free circuit simulator QucsStudio [2]

In few words, why to have used QucsStudio?

• Free circuit simulator
• Easy to use and powerful GUI to build the netlist and to analyze the results
• High quality plots which can be directly used in presentations or reports
• Verilog-A compilation on the fly as commercial tools
• Good convergence
• Many interesting features which are even not available in commercial simulators
 • Possibility to optimize model parameters
 • Manual tuning with sliders
 • Numerical data processing using Octave
 • DC, AC, S-parameter, transient and Harmonic Balance analysis
 • System simulations...
Example of tuning with sliders
Backward compatibility

- If the new model is not enabled, $D_{AVL} = 0$ there is a total backward compatibility with HICUM/L2 v2.4.0.
- I_B vs. V_{CB} characteristics, for several value of V_{BE}. The points correspond to HICUM/L2 v2.4.0 and the lines to the proposed model.
New formulation vs. HICUM/L2 v2.4.0 formulation (1/2)

- I_B and I_C vs. V_{CB} at constant V_{BE}

 - The new model formulation allows to take into account the shift of BV_{CEO} at high-currents due to the modulation of the collector electric field in high-injection.
New formulation vs. HICUM/L2 v2.4.0 formulation (2/2)

- I_B and I_C vs. V_{CB} at constant V_{BE} for a wider range of V_{BE}
Impact of K_{AVL}

- I_B and I_C vs. V_{CB} at low V_{BE} (0.7 V) for several values of K_{AVL} (0 to 1, step 0.2)
- K_{AVL} allows to tune the value of BV_{CBO}
 - BV_{CBO} decreases if K_{AVL} increases

C:/Users/dieder.celli/Quics/hicuml2V2p41/pr/BV1-HL2-241-v1-QuicsStudio.sch
Impact of D_{AVL}

- I_B and I_C vs. V_{CB} at constant V_{BE} (0.7 V and 0.9 V) for $D_{AVL} = 0.5, 1, 2$
- D_{AVL} allows to fine-tune the value of I_{LIM} for the current dependence of BV_{CEO} at high currents
Impact of H_{AVL}

- I_B and I_C vs. V_{CB} at constant V_{BE} (0.7 V and 0.9V) for $H_{AVL} = 0, 0.5, 1$
- H_{AVL} allows to shift the value of BV_{CEO} at high currents
 - BV_{CEO} decreases if H_{AVL} increases
Impact of C_{AVL}

- I_B and I_C vs. V_{CB} at constant V_{BE} (0.7 V and 0.9 V) for $C_{AVL} = 1, 0.5, 0.3$
- C_{AVL} allows to shift the value of BV_{CEO} at high currents
 - BV_{CEO} decreases if C_{AVL} increases. Low values of C_{AVL} have no impact on BV_{CEO}
Impact of S_M

- I_B and I_C vs. V_{CB} at constant V_{BE} (0.7 V and 0.9V) for $S_M = 1, 0.5, 0.1$
- S_M is a smoothing factor allowing to link to the characteristics of the avalanche current before and after I_{LIMeff}
 - The impact of S_M on the simulated characteristics is low. It is advised to keep S_M to its default value 0.1
Impact on runtime (1/2)

- DC simulations at 27°C with ELD0 using Verilog-A codes
 - HICUM/L0 v2.4.0
 - High-current effects on avalanche current implemented from HICUM/L0 v2.4.0 Verilog-A code

- Output characteristics I_C vs. V_{CE} (from 0V beyond BV_{CB0}) at constant V_{BE}
 - Without self-heating in order to see only the impact of the avalanche model at high currents
 - Total of simulated bias points 200,000
 - 1000 V_{CE} (from 0 to 16 V)
 - 200 V_{BE} (from 0.2 to 0.9 V)

- Runtime results

<table>
<thead>
<tr>
<th>HICUM/L2 v2.4.0 BV with high-current effects</th>
<th>HICUM/L2 v2.4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eldo interactive runs completed.</td>
<td>Eldo interactive runs completed.</td>
</tr>
<tr>
<td>There are no simulation error(s) nor warning(s).</td>
<td>There are no simulation error(s) nor warning(s).</td>
</tr>
</tbody>
</table>

- BV extension at high currents is **2.7 time faster** than existing HICUM//L2 v2.4.0 version
Impact on runtime (2/2)

- Output characteristics I_C vs. V_{CE} (from 0V beyond BV_{EB0}) at constant V_{BE}
 - Total of simulated bias points 200,000
 - 1000 V_{CE}
 - 200 V_{BE}

HICUM/L2 v2.40
CPU time 27 mn

Extension with high-current effects on avalanche current
CPU time 10 mn
Parameter extraction guidelines (1/2)

- **Step 1**
 - Direct extraction of Q_{AVL} and F_{AVL} at low V_{BE} and close to the BV_{CEO} (domain where I_B becomes negative) as described in [3] and [4].
 - D_{AVL} set to 0

- **Step 2**
 - Optimization of K_{AVL} at low V_{BE} and high V_{CB} close to the BV_{CBO} [4].
 - D_{AVL} set to 0

- **Step 3**
 - At this stage, self-heating parameters (R_{TH} and thermal coefficients) are assumed to be known
 - SM is set to 0.1
 - D_{AVL} (and possibly C_{AVL}) is optimized at high V_{BE}, before I_{LIM}, and high V_{CB} [1]
 - H_{AVL} set to 0
Parameter extraction guidelines (2/2)

- **Step 4**
 - H_{AVL} (and possibly C_{AVL}) is optimized at high V_{BE}, after I_{ILIM}, and high V_{CB} [1]

- **Comments**
 - Step 3 and 4 can be repeated several times if needed
Summary

- An extension of HICUM/L2 avalanche model at high-injection levels is proposed based on [1]

- The new approach is explained and the implementation in Verilog-A code is validated with ELDO and QucsStudio [2]
 - Total backward compatibility with HICUM/L2 v2.4.0 if the additional parameters are not specified (default values)
 - No converge issue and better runtime than HICUM/L2 v2.4.0

- Validation of the new model can be found in [1] showing excellent agreement versus experimental data

- Verilog-A code available on request for evaluation

- If you are interested in this new formulation, please contact the HICUM developer Michael Schröter (michael.schroeter@tu-dresden.de), and ask him for its implementation in an official future HICUM revision
Appendix A: Calculation of I_{LIM}

The current I_{LIM} used in the model formulation is not a model parameter. It can be computed from the HICUM model parameter R_{Cl0} and V_{LIM} as follows

- I_{LIM} corresponds to the case where $n = \text{Nepi}$. From (5), the electric field is horizontal and therefore

$$E_{\text{LIM}} = -\rho_{\text{epi}} \cdot J_{\text{LIM}} = \frac{-\rho_{\text{epi}} \cdot I_{\text{LIM}}}{A_{E}} \quad (A.1)$$

$
ho_{\text{epi}}$ is the resistivity of the collector under the emitter and A_{E} the emitter area.

- The corresponding potential (integral of the electric field) is given by

$$V_{\text{LIM}} = -E_{\text{LIM}} \cdot W_{\text{epi}} = \frac{\rho_{\text{epi}} \cdot W_{\text{epi}}}{A_{E}} \cdot I_{\text{LIM}} \quad (A.2)$$

- By definition, $\frac{\rho_{\text{epi}} \cdot W_{\text{epi}}}{A_{E}}$ is the vertical resistance of the collector under the emitter R_{Cl0}, leading to the expression of I_{LIM}

$$I_{\text{LIM}} = \frac{V_{\text{LIM}}}{R_{\text{Cl0}}} \quad (A.3)$$
References

