Finding root causes of convergence failures in circuit simulation

AKB, 2021 Nov 4th
Agenda

1. Introduction
2. What is a simulation convergence issue?
3. How to find convergence issues
4. Conclusions
Introduction: Convergence Issues

Convergence Problems in Designs are of the kind
› DC-Op Simulation not working
› Transient simulation stopping before end
› Often accompanied by spikes or oscillations in signals

What can we do against it?
› Avoiding certain equations in models by setting switching/mode parameters
› Avoiding certain model parameter values / combinations
› Changing model by sending requests to Compact Model Coalition (CMC)
The Compact Model Coalition (CMC) is a working collaborative group focused on the standardization of SPICE (Simulation Program with Integration Circuit Emphasis) device models.

When a new or enhanced chip is designed, it must be simulated prior to manufacturing. This can be thought of as proof of concept and is vitally important to validate the concept before it enters the capital intensive phase of manufacturing. The simulations are based on standard models (expressed in the form of equations) governed by CMC.

Once the standard models are proven and accepted by CMC, they are incorporated into design tools widely used by the semiconductor industry. The equations at work in the standard models setting process are developed, refined and maintained by leading universities the CMC directs and funds to standardize and improve the models.

The members of our coalition are modeling experts. All join the CMC for an important and highly valuable reason: they want to be a voice, an influencer, for themselves and their companies in the standard-model-setting process.

Members
› >20 semiconductor companies
› model developing universities/institutes
› all big EDA vendors
Introduction: Compact Models of Compact Model Coalition (CMC)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>CMC standard</th>
<th>Reference code</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBIC</td>
<td>Bipolar</td>
<td>no</td>
<td>Not available</td>
</tr>
<tr>
<td>BJT</td>
<td>Bipolar</td>
<td>no</td>
<td>Not available</td>
</tr>
<tr>
<td>HiCUM</td>
<td>Bipolar</td>
<td>yes</td>
<td>VerilogA</td>
</tr>
<tr>
<td>BSIM3V3</td>
<td>CMOS</td>
<td>yes</td>
<td>C code</td>
</tr>
<tr>
<td>BSIM4</td>
<td>CMOS</td>
<td>yes</td>
<td>C code</td>
</tr>
<tr>
<td>BSIMBulk (+HV option)</td>
<td>CMOS/LDMOS</td>
<td>yes</td>
<td>VerilogA</td>
</tr>
<tr>
<td>HiSIM-HV</td>
<td>LDMOS</td>
<td>yes</td>
<td>VerilogA</td>
</tr>
<tr>
<td>Diode_CMC</td>
<td>Rev rec diode</td>
<td>yes</td>
<td>VerilogA</td>
</tr>
</tbody>
</table>

... and many others
Introduction

What is a simulation convergence issue?

How to find convergence issues

Conclusions
Transient Convergence: Error Criteria

Convergence in a transient simulation is achieved if three conditions are fulfilled:

› Voltage: for each node \(n \), between successive iterations \(k \) and \(k+1 \)

\[
|V(n, k+1) - V(n, k)| < vabstol + reltol \, V_{ref}(n)
\]

Voltage Condition

› Current: for certain branches \(b \), between successive iterations \(k \) and \(k+1 \)

\[
|I(b, k+1) - I(b, k)| < iabstol + reltol \, I_{ref}(b)
\]

Branch Current Condition

› Kirchhoffs Current Law (KCL):
For each node \(n \), the sum of all branch currents into \(n \) is close to zero

\[
\text{Residue} = \sum_{\text{branches into } n} I(b) < iabstol + reltol \, I_{ref,KCL}(n)
\]

Residue Condition
Non convergence incidence

After non-convergence simulator tries again with a reduced time step.
Convergence: normal simulation

This is ok.
Convergence: failing simulation

This is fatal!
Agenda

1. Introduction
2. What is a simulation convergence issue?
3. How to find convergence issues
4. Conclusions
Process Flow for convergence issues

Convergence issue

Guidelines fulfilled?

Simulate Circuit

Inspect log/conv files, run in diagnosis mode / run Convergence Viewer

Insert va debug modules for suspicious devices

Create one-device test cases

Find parameter combination that runs well

Report to CMC model developer (va) or EDA vendor

re-arrange circuit
The „spy“ modules written in verilogA for debugging

module monitor_overv_4(a, b, c, d);
 inout a, b, c, d;
 electrical a, b, c, d;

 integer niter, l_flag;
 real xtime, deltat, ia, ib, ic, id, csum;
 real vlimit=1000;
 analog begin
 @(initial_step("tran")) begin
 niter=0; xtime=0.0;
 end
 niter=niter+1;
 deltat=$abstime-xtime;
 xtime=$abstime;
 ...
 if (l_flag > 0) begin
 $debug("data_overv_4_overflow %M %d %e %e %e %e %e %e", niter, xtime, deltat, V(a), V(b), V(c), V(d));
 end
 $strobe("data_overv_4_sol %M %d %e %e %e %e %e %e", niter, xtime, deltat, V(a), V(b), V(c), V(d));
 end
 endmodule

Detection of

➢ timing, time steps for each iteration
➢ over-currents, over-voltages for each iteration step
➢ oscillations
➢ current sum for a device > epsilon
Output Example: Oscillations

Output and IC/nodeset summary:
 save 26 (current)
 save 18 (voltage)

............9.............8.............

====> Possible Convergence Issue at stepid= 4414, t= 2.769424e-02 s!!!! Sum of currents = 4.343089e-05 A
====> at V(d) = -1.380687e+00, V(g) = -1.052857e+00, V(s) = -1.453365e-04, V(b) = -2.612077e-03

====> Possible Convergence Issue at stepid= 4519, t= 2.769468e-02 s!!!! Sum of currents = 6.106508e-05 A
====> at V(d) = -1.312721e+00, V(g) = -1.004916e+00, V(s) = -1.821515e-03, V(b) = -4.384443e-03

............9.............8.............7.............6.............5.............4.............3...

Number of accepted tran steps = 18385
Idea: Watch the residues that do no fulfill the residue condition

For reaching convergence it is necessary that the residues of all nodes are beyond a small tolerance.
Finding the nodes where this criteria is not fulfilled can lead us to the root cause of convergence failures

\[I_{\text{Residue}} = \sum \text{branches into } n \cdot I(b) < \text{iabstol} + \text{reltol} \cdot I_{\text{ref}, KCL}(n) = I_{\text{Tol}} \]
Convergence Analyzer Tool: Residues

Residues of Simulation Step

Information about step, time and step

Step No. 49 of last 50, Sim Time= 86.337995 us, Time Step 3.0836e-15 s

Curves over no. of iterations

Node names

- XTOP.XBUCK.NET0752
- XTOP.XBUCK.XBUCK_CNTRL_NET0100
- XTOP.XBUCK.XBUCK_CNTRL_NET0117
- XTOP.XBUCK.XBUCK_CNTRL_NET084
- XTOP.XBUCK.XBUCK_CNTRL_NET091
- XTOP.XBUCK.XBUCK_CNTRL_NET096

simulation steps with number of iterations

Pointer to simulation step

navigation buttons

Choices

print function

Conv file name
Example 1

Here: Analysis points to zener diode model s10zd6
Example1: Possible solutions changes in zener diode model

Changing parameter nz (nbv) from 0.2 to 1
 -> wrong slope in breakthrough characteristic

Final solution: use parameters nbvl and ibvl for smoothing the corner

Using breakthrough model of VBIC
 -> wrong behavior for high currents

$log(ID)$

$lbv=1m, nbv=0.2$

$lbvl=1n, nbvl=1$
Correlation of residues

If a model changes behavior so rapidly that residue conditions of nodes A and B cannot be fulfilled, the residues on A and B should be strongly (anti-) correlated or anti-correlated.

A negative correlations of residues between nodes might give us a hint that there is something wrong in the model between these two nodes.
Convergence Analyzer Tool: Correlations

Graph of Simulation Step

Step No. 49 of last 50, Sim Time= 86.337995 us, Time Step 5.1390e-16 s

Correlation view

Here: Analysis points to nodes net0117, net084, net091, net096 and net0100 of instance XIBUCK.CNTRL
The „Killer-NOR Gate“ Problem (BSIM4)

Problem of MOSFET models with quasi static approach
› when transistor is turned on with a fast voltage ramp at the gate a negative current is flowing in the very first moment (where I_D is neglectable).

$$I_D(t) = I_D - C_{gd} \frac{dv_{GS}}{dt}$$

› The longer the channel the bigger the error, since C_{gd} is higher

Solution
› Set parameter „xpart“ to 1 or
› Use NQS model (trnqsmod=1)

<table>
<thead>
<tr>
<th>xpart</th>
<th>Charge partition d/s</th>
<th>Cgd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40/60</td>
<td>4/15*WLC_{ox}</td>
</tr>
<tr>
<td>1</td>
<td>0/100 (unphysical, but working)</td>
<td>0</td>
</tr>
</tbody>
</table>

Agenda

1. Introduction
2. What is a simulation convergence issue?
3. How to find convergence issues
4. Conclusions
Conclusions

› Finding root causes of simulation convergence failures is still a challenge
› Inspection of what the simulator does during iterations is necessary
› Remaining residues give valuable hints on critical nets / devices
› Negative correlations between remaining residues give even more insight
Part of your life. Part of tomorrow.