A look on characterization of semiconductor devices

Tommy Rosenbaum (IFAG DES CDF AMS IMV TTN)
26.10.2021
Motivation + Goal

› How do we need to characterize devices to describe them fully and hence, (at best) be able to simulate them correctly?
 - I do not want to talk about modeling here
 - i.e. whether we can match the characterization data with a compact model is not relevant for this question

⇒ What kind of analyses do we need to fully describe device behavior?
 - TRAN+DC+AC+HB+XXX?!
How to crack a nut?

› The hammer

› The nutcracker

› As a generic tool, I'd guess the hammer wins, but in this example...

› If you have the choice, you would use the nutcracker, right?
 – I'll use this reference later during the presentation
The whole world runs in transient

- Keep in mind that every signal $V_{\text{sig}}(t)$ in the real world runs in transient
 - Strictly speaking, there is no DC, AC, ...
 - All other analyses are (e.g. mathematical) ways to describe what is going on in transient

- Example: Sine wave $V_{\text{sin}} = V_0 \cdot \sin(t \cdot f_0 \cdot (2 \cdot \pi))$

![Graph of a sine wave](image)

- The sine wave can be broken down to two numbers (V_0, f_0)
- .FOUR is the nutcracker for sine waves
Let us break down the transient world

- \(V_{\text{sig}}(t) = \text{const} \) (for \(t > t_{\text{settle}} \))
 - Well, this is obviously a .DC/(.OP)
 - Somehow, this is what is done when a RAMP is used for finding a DC solution using a transient

- \(V_{\text{sig}}(t) = \text{const} + V_0 \sin(t \cdot f_0 \cdot (2 \pi)) \) (for \(t > t_{\text{settle}} \) and sufficiently small \(V_0 \))
 - .DC/(.OP) + .AC
 - All capacitors + inductors (and whatever weird charge/flux controlled elements you have within compact models) simplify to frequency dependent resistors/capacitors/inductors (and as our frequency is const, ...)
 \[\Rightarrow \text{We are somehow back to running another .DC on top of our original .DC} \]

- I can recommend the lecture notes from Prof. W. Schwarz (F. Kurz wrote it down)
 - R.I.P.
 - http://fkurz.net/et/
Let us break down the transient world

› Arbitrary $V_{\text{sig}}(t)$
 – Well, this might not be easy ...

› Without dynamic contributions
 – Then all voltages/currents in the circuit will instantly follow the stimulus
 – ... and we essentially have a single .DC analysis for each timepoint

› With dynamic contributions
 – From one timepoint to the next
 – ... for capacitors

\[
I_C^{n+1} = \frac{C}{h^n} V_C^{n+1} - \frac{C}{h^n} V_C^n = \omega C \Delta V
\]

(Backward Euler)

– ... for inductors

\[
V_L^{n+1} = \frac{L}{h^n} I_L^{n+1} - \frac{L}{h^n} I_L^n = \omega L \Delta I
\]

[1]: QUCS technical papers
 Stefan Jahn, et al., 2007
Let us break down the transient world

- Arbitrary $V_{\text{sig}}(t)$
 - It seems that with dynamic components, a transient gets additional contributions that can also be described by an .AC

- Another way to phrase it
 - A .DC bias describes how a bias behaves
 - An .AC tells us how the device can exit the current bias and enter a new one
A transient example

› Simple diode
 - Consisting of a diode equation (for a static contribution)
 - \(I_{dio} = I_s \left[\exp \left(\frac{V_j}{V_{th}} \right) - 1 \right] \)
 - ... and junction capacitance (for a dynamic contribution)

› Apply a voltage pulse to the diode
 - Note that we will apply a negative pulse over the diode

⇒ We bias the diode in forward at first and the first pulse will turn it off
Let us run a true .TRAN simulation first

› The example
 – $V_0 = 0.9\,\text{V}$, $V_1 = -1\,\text{V}$
 – $t_1 - t_0 = 10\,\text{ns}$
 – $t_2 - t_1 = 5\,\text{ns}$

› The result is rather simple 😊
 – Let us interpret it a bit ...
Let us describe the transient simulation with DC+AC

› Discretize the voltage pulse in e.g. 250ps wide steps

1. Run a DC at the current timepoint
 - At the initial timepoint (t=0) we assume no dynamic contributions

2. Run an AC at \(\omega = 1/250\text{ps} = 4\text{GHz} \) at the current DC bias
 - Determine the effective resistance of all dynamic elements
 - e.g. \(R_{eff} = 1/(\omega C) \)

3. Replace all dynamic elements by a surrogate circuit
 - For a capacitor: effective resistance in series with voltage source (\(V^n_C \))

4. Go back to 1 and repeat for the next timepoint

\[
I_{C}^{n+1} = \left(\frac{C}{h^n} \right) V_{C}^{n+1} - \left(\frac{C}{h^n} \right) V_{C}^n = \omega C \Delta V
\]
Let us describe the transient simulation with DC+AC

› Result
- Lines correspond to a true .TRAN simulation
- Markers correspond to the .DC/.AC approach

⇒ We have a match 😊
Conclusion

1. The inverse transient time step may be considered as an effective frequency
2. .DC and .AC seem to be sufficient to describe transient behavior

› Are there limitations?

› Do we need .HB or other RF analyses?
 – At least for characterization normally we do not
 – Why? Nonlinearities come from bias dependence of conductances/capacitances (which we have determined from .AC at different bias)
 – Well, you may enter a different static bias, which you do not reach with normal DC
 – And you also stress your device differently (as it is a dynamic stress)

3. If you characterize a device in all bias points with .DC and .AC at all frequencies you collected all data to fully describe it

› Do not get me wrong
 – I am not saying that other analyses are useless
 – Analyses need to be chosen according to application for true verification
 – Do not use DC+AC to check a transient FoM (=figure of merit). Use the nutcracker!
How characterization is done in practice?

- I hope everybody does DC and AC ...
Part of your life. Part of tomorrow.