A Comparative SiGe and InP HBT RF Reliability Study

Christoph Weimer1,2 and Michael Schröter1,2

1Chair for Electron Devices and Integrated Circuits, Technische Universität Dresden, 01062 Dresden, Germany

2SemiMod GmbH, 01159 Dresden, Germany

34th workshop AKB
Rohde & Schwarz, Munich, Germany
November 18, 2022
Outline

• Motivation and transistor characterization
• RF stress conditions and device degradation
• Summary and conclusion
Motivation and transistor characterization
Silicon-Germanium HBT

\[V_{BC} = \{-0.5, -0.3, 0, 0.3\} \text{ V} \]

\[f = 25 \text{ GHz} \]

\[
\begin{align*}
J_C \text{ (mA/\mu m}^2) & \quad 10^0 & \quad 10^1 & \quad 10^2 \\
V_{BE} \text{ (V)} & \quad 0.7 & \quad 0.8 & \quad 0.9 \\
\end{align*}
\]

\[
\begin{align*}
f_T \text{ (GHz)} & \quad 0 & \quad 100 & \quad 200 & \quad 300 \\
J_C \text{ (mA/\mu m}^2) & \quad 10^{-1} & \quad 10^0 & \quad 10^1 & \quad 10^2 \\
\end{align*}
\]

=> Very good agreement between HICUM/L2 simulation and measurement data
Indium-Phosphide HBT

\[V_{BC} = \{-0.4, -0.3, 0, 0.3\} \text{ V} \]

\[f = 20 \text{ GHz} \]

=> Very good agreement between HICUM/L2 simulation and measurement data
Open-base collector-emitter breakdown voltage BV_{CEO}

=> Same $J_C/J_{C,fT-peak}$ of respective HBT used to determine BV_{CEO}

$BV_{CEO}^{SiGe} < BV_{CEO}^{InP}$

=> Implications for RF reliability?

=> Compare RF degradation behavior of both devices
Open-emitter collector-base breakdown voltage BV_{CBO}

$BV_{CBO} = \begin{cases}
3 & V_{BE} = 0 \\
2 & 0 < V_{BE} < 1 \\
1 & 1 < V_{BE} < 2 \\
0 & V_{BE} > 2
\end{cases}$

SiGe

InP

$10^3 J_C/J_{C,f_{T,peak}}$ vs V_{CB}

BV_{CBO} (SiGe HBT) $>$ BV_{CBO} (InP HBT)

=> Same $J_C/J_{C,f_{T,peak}}$ of respective HBT used to determine BV_{CBO}
Self-heating-caused limitation of the maximum quiescent V_{CE}

$V_{BE} = \{0.8, 0.82, 0.84, 0.85, 0.86, 0.88, 0.9, 0.94\} \text{ V}$
$V_{BE} = 0.78 \ldots 0.9 \text{ V}$ in 20 mV steps

$J_c (\text{mA}/\mu \text{m}^2)$ vs $V_{CE} (\text{V})$

$J_c (\text{mA}/\mu \text{m}^2)$ vs $V_{CE} (\text{V})$

\Rightarrow Self-heating limits maximum attainable quiescent V_{CE} at fixed J_c
RF stress conditions and device degradation
Silicon-Germanium HBT: RF stress conditions

\[V_{CE} = 2 \text{V}, \quad f_0 = 10 \text{GHz}, \quad \Gamma_{L0} = 0.527/70.1^\circ \]
\[J_{C,\text{lin}} = 6 \text{mA/\mu m}^2 \]

\[\begin{align*}
P_{\text{avs}} &= \{-7.91, 1.13\} \text{dBm} \\
I_C &= 0 \times V_{BE} = 0
\end{align*} \]

\[10 \log_{10} \left(\frac{P_{L,\text{del}}}{A_{E0}} \right) \]

\[P_{\text{avs}} (\text{dBm}) \]

\[J_C, G_t, \text{PAE} \]

\[\begin{align*}
I_C (\text{mA}) &\quad I_C (\mu A) \\
V_{CE} (\text{V}), v_{CE} (\text{V}) &\quad \Gamma_L = 0.527 \quad \angle 70.1^\circ
\end{align*} \]

\[P_{\text{L,del}}/A_{E0}, \circ J_C, \bigtriangleup G_t, \times \text{PAE} \]

\[\Rightarrow \text{Transient } i_C(t)-v_{CE}(t) \text{ swings far beyond } BV_{CEO} \text{ up to } v_{CE}(t) (\approx v_{CB}(t)) \approx BV_{CBO} \]
Silicon-Germanium HBT: Device degradation

\[\delta r_{12} = \delta \text{Re}\{Z_{12}\} \approx \delta R_E \]

\[J_C = [6\ldots40] \text{mA/\mu m}^2 \quad \frac{P_{L,\text{del}}}{A_{E0}} = [1.5\ldots31] \text{mW/\mu m}^2 \]

\[J_C > 40 \text{mA/\mu m}^2 \quad \frac{P_{L,\text{del}}}{A_{E0}} > 31 \text{mW/\mu m}^2 \]

\[\delta I_C = \{6\ldots40\} \text{mA/\mu m}^2 \quad \delta r_{12} = \delta \Re\{Z_{12}\} \approx \delta R_E \]

\[V_{CE} = 0.7 \text{V} \quad J_C > 40 \text{mA/\mu m}^2 \quad P_{L,\text{del}} > 31 \text{mW/\mu m}^2 \]

\[\times 0.81 \text{V} \quad \bigcirc 0.85 \text{V} \quad \triangle 0.92 \text{V} \]

\[\times 0.96 \text{V} \quad \bigcirc 1.00 \text{V} \]

\[t_{\text{stress}} (h) \]

=> Significant degradation only in highly non-linear RF operation

=> Degradation behavior qualitatively similar to SG13G2
Indium-Phosphide HBT: RF stress conditions

\[V_{CE} = 2.5 \text{ V}, \quad f_0 = 10 \text{ GHz}, \quad \Gamma_{L0} = 0.674 / 29.3^\circ \]
\[J_{C,\text{lin}} = 6 \text{ mA/\mu m}^2 \]

\[P_{\text{avs}} = \{-7.91, 0.13\} \text{ dBm} \]

\[*V_{BE} = 0.82 \text{ V} \quad \circ I_B = 0 \]

\[\Rightarrow \text{Transient } i_C(t) - v_{CE}(t) \text{ up to } v_{CE}(t) (\approx v_{CB}(t)) \approx B V_{CBO} \approx B V_{CEO} \]
RF stress conditions and device degradation

Indium-Phosphide HBT: Device degradation

\[\delta r_{12} = \delta \text{Re}\{Z_{12}\} \approx \delta R_E \]

- \[J_C = [6 \ldots 8] \text{ mA/\mu m}^2 \]
- \[P_{L,\text{del}} = [3.7 \ldots 7.3] \text{ mW/\mu m}^2 \]

\[V_{CE} = 0.7 \text{ V} \]

\[J_C = 9.3 \text{ mA/\mu m}^2 \]

\[\frac{P_{L,\text{del}}}{A_{E0}} = 7.8 \text{ mW/\mu m}^2 \]

\[\delta r_{12} = \delta R_E \{Z_{12}\} \approx \delta R_E \]

- \[J_C = [6 \ldots 8] \text{ mA/\mu m}^2 \]
- \[P_{L,\text{del}} = [3.7 \ldots 7.3] \text{ mW/\mu m}^2 \]

\[J_C = 9.3 \text{ mA/\mu m}^2 \]

\[\frac{P_{L,\text{del}}}{A_{E0}} = 7.8 \text{ mW/\mu m}^2 \]

\[J_C = 9.3 \text{ mA/\mu m}^2 \]

\[\frac{P_{L,\text{del}}}{A_{E0}} = 7.8 \text{ mW/\mu m}^2 \]

=> Significant degradation only in highly non-linear RF operation
InP HBT: Reproduction of degradation behavior

\[
\delta r_{12} = \delta \text{Re}\{Z_{12}\} \approx \delta R_E
\]

\[V_{CE} = 0.7 \text{ V}\]

\[
J_C = 9.3 \text{ mA/\mu m}^2 \quad \frac{P_{L,\text{del}}}{A_{E0}} = 7.8 \text{ mW/\mu m}^2
\]

\[
\delta I_C\% = \frac{I_C(t) - I_C(0)}{I_C(0)} \times 100\%
\]

\[
\delta r_{12}\% = \frac{r_{12}(t) - r_{12}(0)}{r_{12}(0)} \times 100\%
\]

=> Degradation behavior reproducible on a different die
Summary and conclusion
Summary and conclusions

• The investigated SiGe and InP HBTs are extremely robust and reliably operable far beyond BV_{CEO} during the investigated stress times.

• It is very difficult to measure degradation of SiGe HBTs under the most extreme dynamic stress conditions.

• Only strongly non-linear RF operation causes degradation of the collector current in both devices under test during the investigated stress times.

• In contrast to SiGe HBTs, the emitter resistance in InP HBTs degrades noticeably as well.

• The smaller BV_{CEO} of SiGe HBTs (compared to InP HBTs) does not have any negative implications for RF reliability.
Acknowledgements

• German National Science Foundation (DFG SCHR 695/17) for financial support

• Rohde & Schwarz for providing a ZVA 50 for long-term RF stress tests