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III-V lab : an industrial research lab dedicated to III-V material

► III-V lab topics : microlectronics and optics

► Key activities: from epitaxy to device fabrication, integrated circuits design and packaging
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Focus on the High Speed Analogue digital interfaces group (CADI)

► In house InP DHBT technology, modeling, circuit design and packaging
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Technological improvements drivers: 

 Transistor geometry

 Epitaxial structure

 e-beam/stepper lithography

 Material etching

 Under-etching control

 Quality of ohmic contacts

1980 

GaAs HBT 

(150µm)

1994

First InP HBTs

(4µm)

2003

Self-aligned

contacts (2µm)

2010

0.7-µm HBT

2021

0.4-µm HBT

III-V Lab technology over the years

2020

0.5-µm HBT circuit
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Application context of our technology

Optical interfaces Competition 
(optical fiber communications)

Towards 200 GBd PCS-QAM coherent transmissions

FinFET/FDSOI < 5nm,  L/V 

GAA, TFET, III-V, …

Nokia PSE-VI: Current GEN ASICs at 130 GBd generating up to 

1.2 Tb/s
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Our baseline technology Benchmark

R. Hersent et al., "InP DHBT Linear Modulator Driver With a 3-Vppd PAM-4 Output Swing at 
90 GBaud: From Enhanced Transistor Modeling to Integrated Circuit Design," in IEEE 
Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2023.3305150.

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8

(f
T
×

f M
A

X
)1

/2
(G

H
z)

Breakdown voltage (V)

CMOS (Bulk, SOI, FinFET)
SiGe HBT
InP/GaInAs HBT
This work
InP/GaAsSb HBT
ISO curve InP
ISO curve CMOS
ISO curve GaAsSb
ISO curve SiGe

III-V lab InP DHBT baseline 

technology aims small to 

medium scale IC fabrication
(ie, > 99% transistor yield)
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Note: although some circuits can work beyond that limit, 

BVCEO still constitute a limitation to be considered 
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Technology usage

o The process itself is used to fabricate very high 

performance circuits on a regular basis (MPW)

o It’s also used as a validation vehicle for 

technology developments

Our main target is to maintain yield across 

technology variants  this is a constraint for 

performance improvement
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Baseline technology description 

Baseline HBT

• 0.5µm  

• Lift-off TiPdAu

• dEB > 60nm

Current process « Work Horse » 

0.5µm InP DHBT / TiPdAu emitter
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Baseline technology description 

0.5-µm InP DHBT with fT ~ 370 GHz and fMAX > 500 GHz
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 Fabrication yield > 98 %

 Performances: 

■ β > 30

■ BVCE0 > 4.5 V

■ fT = 370 GHz, fmax > 500 GHz 

■ JC ~ 6 mA/µm

D2 In

D1 In

Clk In

OutN

OutP

DC controls and supplies

DC controls and supplies

R. Hersent et al.,“160-GSa/s-and-
beyond 108-GHz-bandwidth over-2-
Vppd output-swing 0.5-μm InP DHBT 
2:1 AMUX-driver for next generation 
optical communications”, 2022 MTT-S 
IMS Symposium Proceedings, June 
2022

Beyond-160-GSa/s 0.5-µm InP DHBT AMUX-driver

3 emitter lenghts
are available :
5-, 7- and 10-µm
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Different HBT generations on the same wafer

Homogeneous performances and high fabrication yield for 3 different emitter sizes
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WE = 0.4 µm

Under-development generation

WE = 0.5 µm

current generation
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0.4-µm InP DHBT next generation
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Emitter size: 0.4 x 5 µm²

VBC = 0 V

N. Davy , V. Nodjiadjim, M. Riet, C. Mismer, M. Deng, 
C. Mukherjee, J. Renaudier, C. Maneux, “0.4-μm 
InP/InGaAs DHBT with a 380-GHz fT, > 600-GHz fMAX

and BVCE0 > 4.5 V”, 2021 IEEE BiCMOS and Compound 
Semiconductor Integrated Circuits and Technology 
Symposium (BCICTS)

WE=0.4µm, LE=5µm

WB=0.2µm

 Fabrication yield > 98 %

 Performances: 

■ β =29

■ BVCE0 > 4.5 V

■ fT = 380 GHz, fmax > 600 GHz 

■ JC ~ 6 mA/µm

Improved frequency performances demonstrated: fT=380 GHz and fmax > 600 GHz
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Circuit Design Activities

Optical transmission

E/O
Modulator

Transmitter
DSP

Transmitter input 
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E/O conversion

To optical
MUX

Proposed solutions

Digital processing

AMUX-driver
DAC1
DAC2

► Reduce sources of bandwidth degradations and use innovative approaches

Monolithicaly integrate

DACs and DSP Use Analog-Multiplexer with integrated
driver stage and integrate the Analog 
front-end with the DACs

Co-design and co-package

driver and modulator
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Circuit Design Activities

Analog multiplexer (AMUX) principle of operation

AMUX: Analog Interleaver
2:1: Two-to-one

2:1
AMUX

DAC 2

DAC 1

Macro-DAC using 2:1 AMUX

Clock 2Clock 1

N-bit Digital 
signals

High-symbol-rate
PAM-4 analog signals

N bits

N bits

Multiplier

DACs’ Bandwidth Summing using a High-Sampling-Rate AMUX

DACs’ 
Bandwidth
Summing

AMUX : Analog Interleavers
2v1 : Two-to-one

AMUX
2v1

DAC 2

DAC 1

Macro-DAC using a 2v1 
analog interleaver

Clock 2Clock 1

N-bit digital 
signals

High-symbol-rate
PAM-4 analog signals

N bits

N bits

Multiplier

AMUX : Analog Interleavers
2v1 : Two-to-one

AMUX
2v1

DAC 2

DAC 1

Macro-DAC using a 2v1 
analog interleaver

Clock 2Clock 1

N-bit digital 
signals

High-symbol-rate
PAM-4 analog signals

N bits

N bits

Multiplier

AMUX : Analog Interleavers
2v1 : Two-to-one

AMUX
2v1

DAC 2

DAC 1

Macro-DAC using a 2v1 
analog interleaver

Clock 2Clock 1

N-bit digital 
signals

High-symbol-rate
PAM-4 analog signals

N bits

N bits

Multiplier

AMUX : Analog Interleavers
2v1 : Two-to-one

AMUX
2v1

DAC 2

DAC 1

Macro-DAC using a 2v1 
analog interleaver

Clock 2Clock 1

N-bit digital 
signals

High-symbol-rate
PAM-4 analog signals
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N bits

Multiplier

Output signal 

D1 D2

Clock

AMUX interleaving Cell
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Circuit Design Activities
AMUX-driver details and performance 

Block Schematic

High-performance InP-DHBT AMUX-driver IC with large output swing

VO=2.0 Vppd

100 GSa/s

DC controls and supplies

DC controls and supplies

D1 In

Clk In

D2 In

OutP

OutN

Active area: 0.22 mm²

Input linear
amplifiers

Clock limiting
Amplifier

Output linear
driver

2:1 
Interleaving

Cell

Input linear
amplifiers

A1 A2

A1 A2

A3

D1

D2

Clk

OutP

OutN

A4

A5 A6

Die: 1.2 x 1.5 mm²

100-GBaud PAM-4 

output (electrical) eye diagram

Total power consumption @ 2-Vppd: 
1.2W

IC fabrication at III-V Lab

by M. Riet and C. Mismer

R. Hersent et al, "100 GBaud DSP-free PAM-4 optical 

signal generation using an InP-DHBT AMUX-driver 

and a Thin-Film Lithium Niobate Modulator 

Assembly", BCICTS 2023
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Electro-Optical Packaging Activities

 AMUX-driver assembly with TFLN MZM optical modulator at III-V Lab

 Assembly picture

Custom PCB with
DC routing

RC-damped DC 
decoupling

50µm x 220µm
wire-bond

On MZM chip 
termination
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What about the future of InP technology ?

What can be done in CMOS, will be done in CMOS

CMOSSiGeInP

Common (accepted) vision:

► What can be done in CMOS will be done in CMOS

► What can’t be done in CMOS will be done in SiGe

► What can’t be done in SiGe will be done in III-V

The driving force for CMOS is digital baseband (huge market = huge investments) 
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What about the future of InP technology ?

CMOS ft and fMAX reached saturation @ 28 nm node

CMOS ft and fMAX reached saturation around 28 nm node

Data from:
• Wakayama et al, IEDM 2013

• Willy Sansen, ISSCC, 2015

• H.-J. Lee, S. Rami, IEDM 2018

• E. Morifuji, et al. VLSI 1999

approximately equal to the start of D band

Where CMOS is not fast enough, SiGe BiCMOS

comes into play
The limit is partly determined by market size and amount of 

digital content

What’s left for III-V and InP?
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What about the future of InP technology ?

So what ? Shouldn't it be the opposite ?
Despite superior performance: InP stays a niche market technology
► InP is more expensive

 Small diameter wafers
 More expensive & rare material
 Brittle material
 No economy of scale

► Lower integration level,
lower yield

► Not easily compatible with digital CMOS (baseband)
► Reliability 

 no foreseen penalty wrt silicon, but limited literature and work published

► Modeling /PDK ?
 When a silicon designers has a modeling issue, he asks for a fix
 When a III-V designer has a modeling problem, he thinks “is it really useful to fix it, process variations are larger in anyway”

► Lower maturity
► backend not compatible with mainstream Silicon packaging

Lower manufacturability

SiGeInP
CMOS

?
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What about the future of InP technology ?

Lower manufacturability induces negative feedback cycle

It could be a status quo forever! 

Lower 
investment

Lower 
manufacturability

Restricted 
market 
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What about the future of InP technology ?

InP has the best intrinsic potential for frequencies above 100 GHz

► InP has a higher Johnson limit 

► InP yields higher PSAT above 100 GHz

source: Georgia tech PA survey
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This could be the future of InP technology …

SOITEC 
SMARTCUTTM approach

XFAB / IMEC 
µtransfer printing approach

IMEC 
nano ridges 

approach

Co-packaging
(SHIFT project)

… these strategies may help to break the negative feedback circle 
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Conclusion

Our vision:

o Continuous performance improvement while 

maintaining yield

o Improve reliability and provide accurate models 

& modern PDK

o Improve InP manufacturability & decrease cost 

to widen technology adoption (InPoSI, µTP)

o Strengthen the InP ecosystem

o Provide InP technology access to external 

partners for R&D and pre-production

o Provide a path to higher volume via 

external foundry / technology licensing


