COMPACT MODELING OF NONLINEAR SELF-HEATING IN SIGE HBTS

Marnix Willemsen

AKB-WORKSHOP

2023, 9-10 NOVEMBER

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

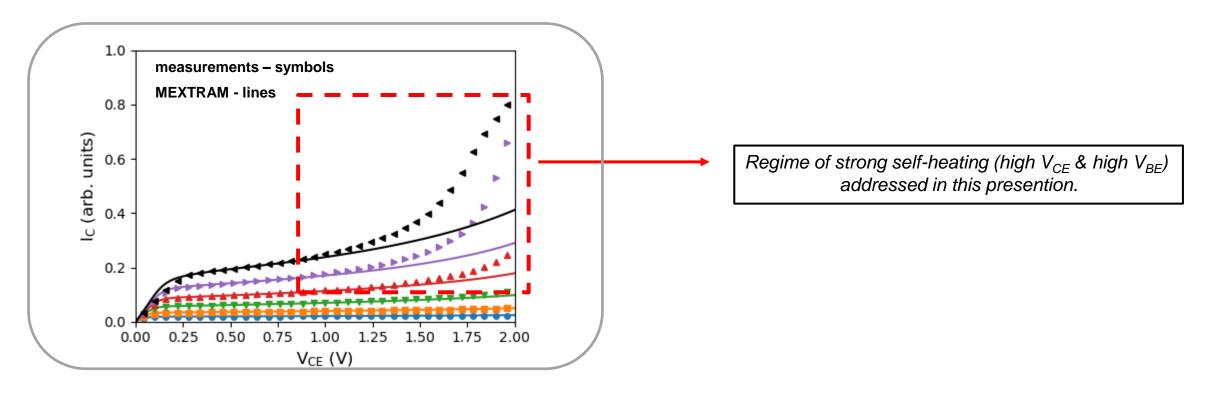
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2023 NXP B.V.

CONTENTS

- Introduction.
- Background nonlinear self-heating.
- Results.
- Conclusions.

INTRODUCTION

- SiGe HBTs are high current-density devices with strong self-heating.
- Compact modeling with Mextram model under conditions of strong self-heating is challenging.



CONTENTS

- Introduction.
- Background nonlinear self-heating.
- Results.
- Conclusions.

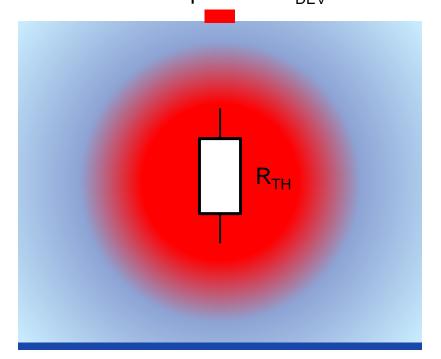
NONLINEAR SELF-HEATING

- What is nonlinear self-heating?
 - Nonlinear self-heating refers to a nonlinear relationship between the temperature increase ΔT and dissipated power P_{diss} , instead of a linear equation, i.e., $\Delta T = R_{TH} \cdot P_{diss}$.
- Nonlinear self-heating has been investigated for transistors, for example GaAs HBTs.¹
- This presentation:
 - Review of nonlinear self-heating in SiGe HBTs.

1. "Dependence of thermal resistance on ambient and actual temperature", J.C.J. Paasschens et al., IEEE BCTM 2004

SELF-HEATING AND THERMAL RESISTANCE

Device (heat source) at temperature T_{DEV}



Semiconductor material:

Thermal conductivity depends on temperature*:

$$\kappa(T) = \kappa_{ref} \left(\frac{T}{T_{ref}} \right)^{-\alpha}$$

Thermal resistance*:

$$R_{TH} = R_{TH, ref} \left(\frac{T}{T_{ref}}\right)^{\alpha}$$

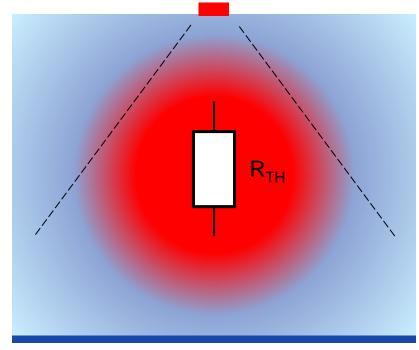
Ambient (heat sink) at temperature T_{AMB}

NXP.

SELF-HEATING AND THERMAL RESISTANCE

Device (heat source)

at temperature T_{DEV}



Ambient (heat sink) at temperature T_{AMB}

Semiconductor material:

Thermal conductivity depends on temperature*:

$$\kappa(T) = \kappa_{ref} \left(\frac{T}{T_{ref}} \right)^{-\alpha}$$

Thermal resistance*:

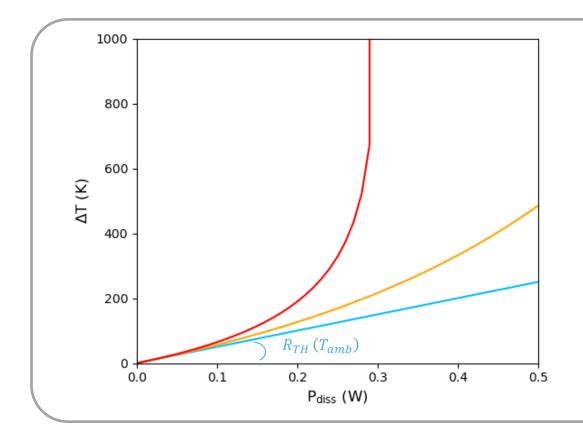
$$R_{TH} = R_{TH, ref} \left(\frac{T}{T_{ref}}\right)^{\alpha}$$

Which temperature to use in the thermal resistance?

- Thermal resistance dependent on ambient temperature.
 - Good first order approximation.
 ("most of the thermal resistance is close to the ambient temperature")
 - Implemented in Mextram.
- 2. Thermal resistance dependent on device temperature.
 - Less realistic.
 - It results in huge amounts of self-heating.
 - See benchmark on the next slide.
- Nonlinear self-heating.
 - The temperature gradient between the device and the heat sink is included, leading to a <u>nonlinear</u> relationship between the temperature increase and dissipated power.

^{*} α thermal coefficient of the thermal resistance. Typical Si-value: 1.3 (ATH-model parameter in Mextram)

COMPARISON OF SELF-HEATING MODELS



Thermal resistance dependent on ambient temperature

$$\Delta T = R_{TH} \left(T_{amb} \right) \cdot P_{diss}$$

Nonlinear self-heating model (temperature gradient included)

$$\Delta T = T_{amb} \cdot \left[\left(1 + \frac{(1 - \alpha) \cdot R_{TH \ amb} \cdot P_{diss}}{T_{amb}} \right)^{\frac{1}{1 - \alpha}} - 1 \right]$$

Thermal resistance dependent on device temperature

$$\Delta T = R_{TH} (T_{device}) \cdot P_{diss}$$

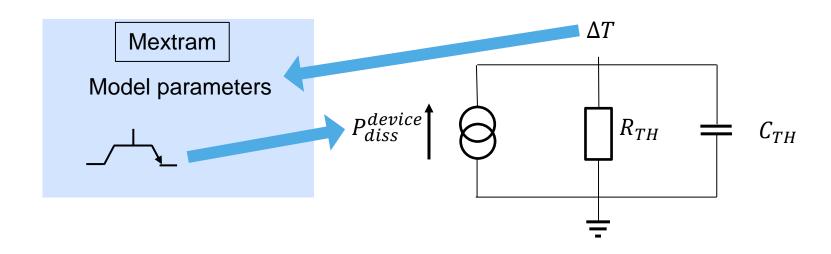
- Nonlinear self-heating model shows more self-heating in comparison to a thermal resistance dependent on the ambient temperature (linear self-heating $\Delta T = R_{TH} (T_{amb}) \cdot P_{diss}$)
- Thermal resistance dependent on the device temperature shows huge amounts of self-heating.
 Not addressed further.

BACKGROUND SELF-HEATING

- Self-heating:
 - Linear relationship between the temperature increase ΔT and dissipated power P_{diss} via the thermal resistance R_{TH} (T_{amb}).

$$\Delta T = T_{dev} - T_{amb} = R_{TH} (T_{amb}) \cdot P_{diss}$$
 or $P_{diss} = \frac{\Delta T}{R_{TH} (T_{amb})}$

Implementation as a linear network in Mextram.

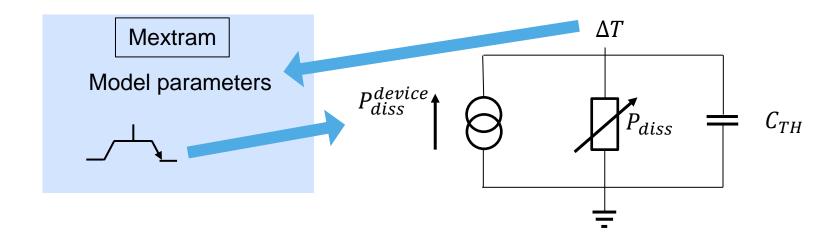


BACKGROUND NONLINEAR SELF-HEATING

- Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):
 - Nonlinear relationship between the temperature increase ΔT and dissipated power P_{diss} .

$$\Delta T = T_{amb} \cdot \left[\left(1 + \frac{(1 - \alpha) \cdot R_{TH} (T_{amb}) \cdot P_{diss}}{T_{amb}} \right)^{\frac{1}{1 - \alpha}} - 1 \right] \quad \text{or} \quad P_{diss} = \frac{T_{amb}}{R_{TH} (T_{amb}) \cdot (1 - \alpha)} \cdot \left[\left(1 + \frac{\Delta T}{T_{amb}} \right)^{1 - \alpha} - 1 \right]$$

Implementation



BACKGROUND NONLINEAR SELF-HEATING

- Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):
 - Nonlinear relationship between the temperature increase ΔT and dissipated power P_{diss} .

$$\Delta T = T_{amb} \cdot \left[\left(1 + \frac{(1 - \alpha) \cdot R_{TH} (T_{amb}) \cdot P_{diss}}{T_{amb}} \right)^{\frac{1}{1 - \alpha}} - 1 \right] \quad \text{or} \quad P_{diss} = \frac{T_{amb}}{R_{TH} (T_{amb}) \cdot (1 - \alpha)} \cdot \left[\left(1 + \frac{\Delta T}{T_{amb}} \right)^{1 - \alpha} - 1 \right]$$

- Few remarks on the equations:
 - The nonlinear equations reduce to linear self-heating in the limit of small amounts of dissipated powers or self-heating.

Taylor expansion:
$$\Delta T \approx T_{amb} \cdot \left[1 + \frac{R_{TH} \left(T_{amb}\right) \cdot P_{diss}}{T_{amb}} - 1\right] = R_{TH} \left(T_{amb}\right) \cdot P_{diss}$$

• The nonlinear equations are <u>not</u> defined for a temperature scaling constant $\alpha = 1$. Equations for the temperature coefficient of the thermal resistance $\alpha = 1$ can be derived as well.

$$\alpha = 1 \qquad \Delta T = T_{amb} \cdot \left[e^{R_{TH}(T_{amb}) \cdot P_{diss}/T_{amb}} - 1 \right] \quad \text{or} \quad P_{diss} = \frac{T_{amb}}{R_{TH}(T_{amb})} \cdot ln \left(1 + \frac{\Delta T}{T_{amb}} \right)$$

BACKGROUND NONLINEAR SELF-HEATING

- Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):
 - Nonlinear relationship between the temperature increase ΔT and dissipated power P_{diss} .

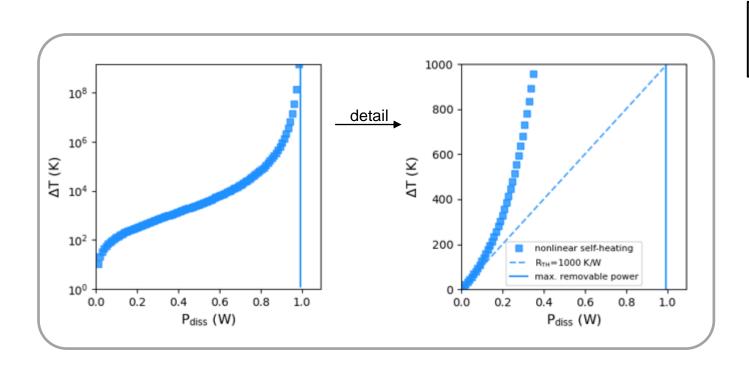
$$\Delta T = T_{amb} \cdot \left[\left(1 + \frac{(1 - \alpha) \cdot R_{TH} (T_{amb}) \cdot P_{diss}}{T_{amb}} \right)^{\frac{1}{1 - \alpha}} - 1 \right] \quad \text{or} \quad P_{diss} = \frac{T_{amb}}{R_{TH} (T_{amb}) \cdot (1 - \alpha)} \cdot \left[\left(1 + \frac{\Delta T}{T_{amb}} \right)^{1 - \alpha} - 1 \right]$$

- Few remarks on the equations:
 - The nonlinear equations reduce to linear self-heating in the limit of small amounts of dissipated powers or self-heating.

Taylor expansion:
$$\Delta T \approx T_{amb} \cdot \left[1 + \frac{R_{TH} \left(T_{amb}\right) \cdot P_{diss}}{T_{amb}} - 1\right] = R_{TH} \left(T_{amb}\right) \cdot P_{diss}$$

• There is a limit of high dissipation where ΔT cannot be calculated ($\alpha > 1$ and $P_{diss} > \frac{T_{amb}}{(\alpha - 1) \cdot R_{TH} (T_{amb})}$), which is explained as thermal runaway, i.e., there is more power dissipated that can be removed leading to an infinite temperature increase. See next slide.

SELF-HEATING, NONLINEAR SELF-HEATING AND THERMAL RUNAWAY



$$\Delta T = T_{amb} \cdot \left[\left(1 + \frac{(1 - \alpha) \cdot R_{TH} (T_{amb}) \cdot P_{diss}}{T_{amb}} \right)^{\frac{1}{1 - \alpha}} - 1 \right]$$

Thermal runaway:

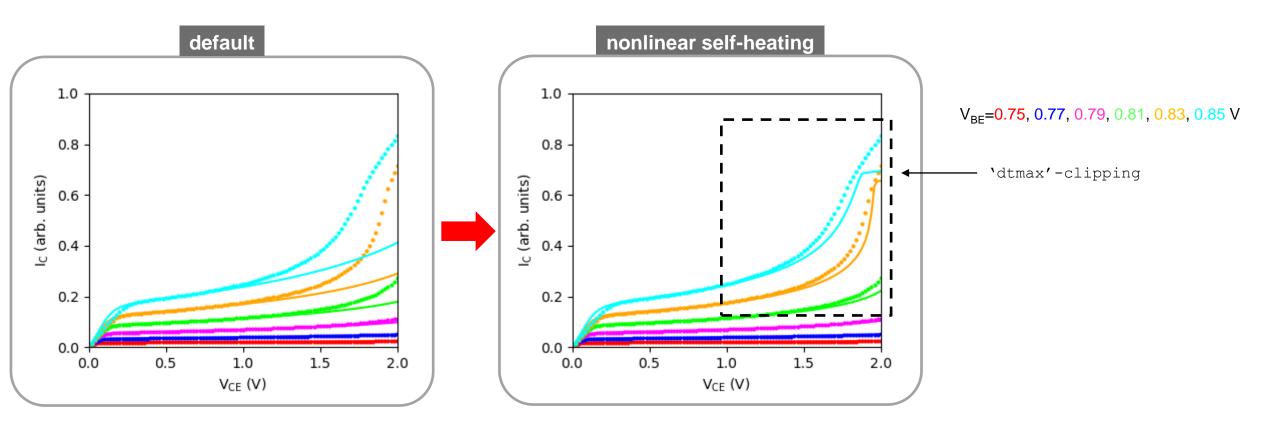
- $\alpha > 1$
- P_{diss} above maximum removable power:

$$\frac{T_{amb}}{(\alpha - 1) \cdot R_{TH} (T_{amb})}$$

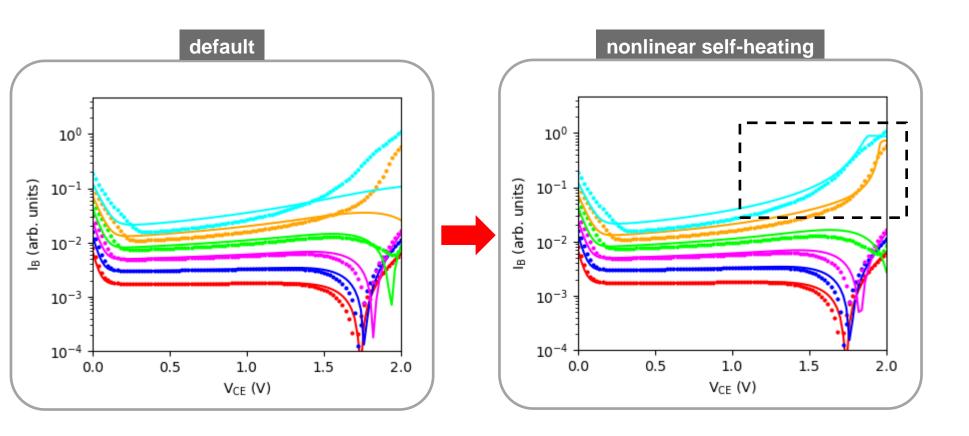
Thermal runaway effect in the equations occurs at very high device temperatures. Note that the device temperature can be clipped in Mextram. ('dtmax' parameter) Not of practical importance.

CONTENTS

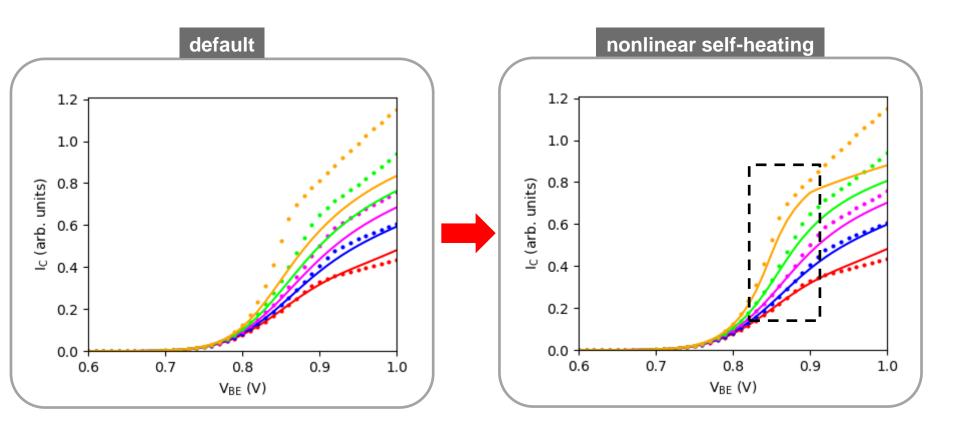
- Introduction.
- Background nonlinear self-heating.
- Results.
- Conclusions.



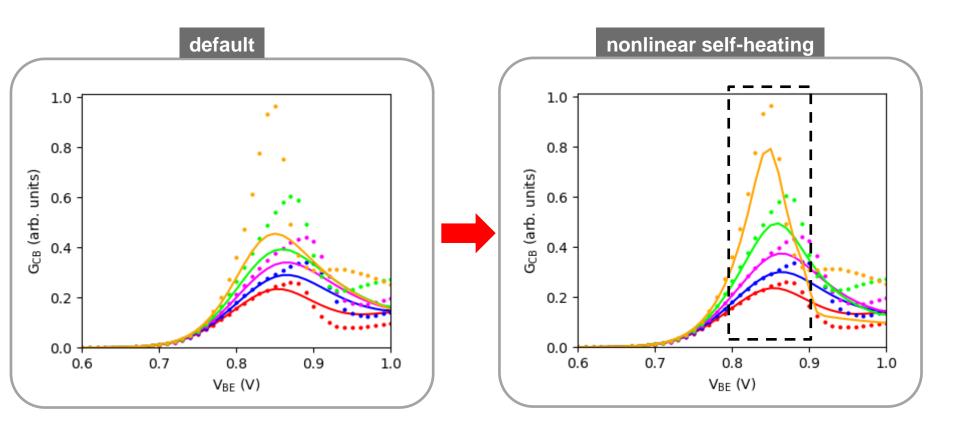
- Nonlinear self-heating turned on. No additional tuning of parameters.
- Collector current versus collector-emitter voltage.



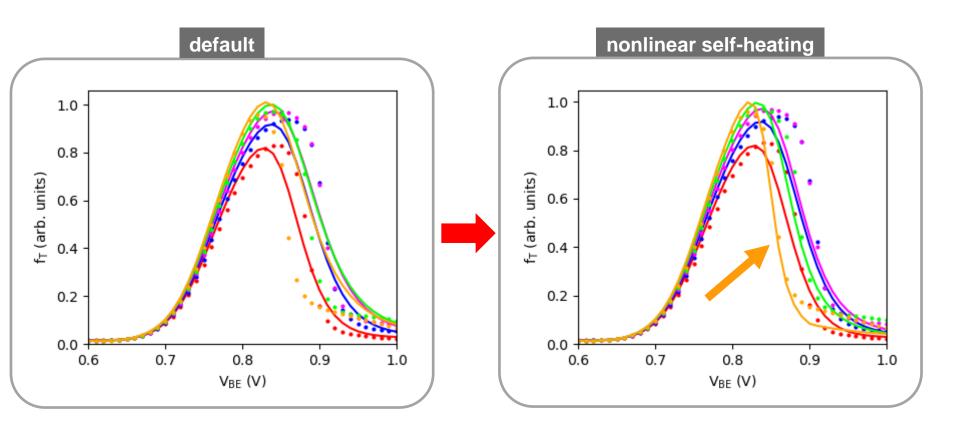
- Nonlinear self-heating turned on. No additional tuning of parameters.
- Base current versus collector-emitter voltage.



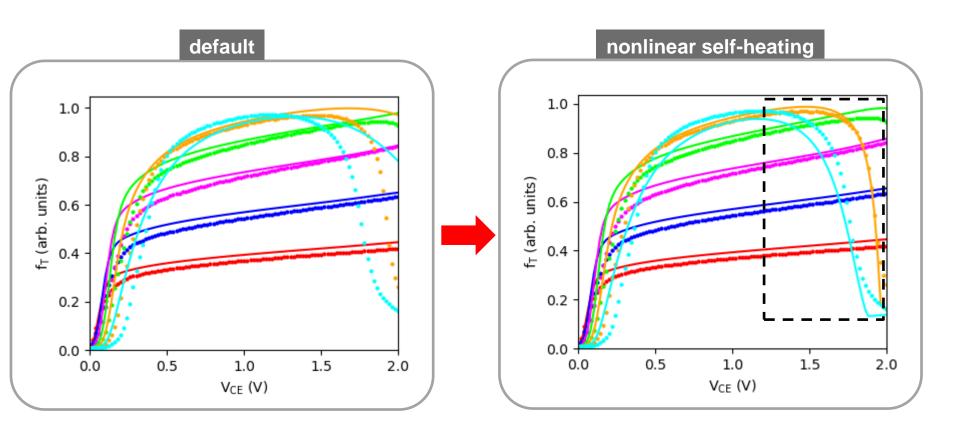
- Nonlinear self-heating turned on. No additional tuning of parameters.
- Collector current versus base-emitter voltage.
 - Note that peak f_T is at V_{BE} =0.85 V.



- Nonlinear self-heating turned on. No additional tuning of parameters.
- Trans-conductance versus base-emitter voltage.



Nonlinear self-heating turned on. No additional tuning of parameters.



• Nonlinear self-heating turned on. No additional tuning of parameters.

CONTENTS

- Introduction.
- Background nonlinear self-heating.
- Results.
- Conclusions.

STATUS MEXTRAM IMPLEMENTATION

- Nonlinear self-heating has been added to MEXTRAM by Auburn University. (NXP request)
 - Available starting in release 505.4
 - Parameter / switch `swnlsh' introduced for backward compatibility.
 - swnlsh=0 (default): 'normal' self-heating.
 - swnlsh=1: nonlinear self-heating.
 - Furthermore, no additional parameters. The same self-heating model parameters are used in nonlinear self-heating.

CONCLUSIONS

- Nonlinear self-heating effect investigated for SiGe HBTs.
 - <u>Nonlinear self-heating</u>: The temperature gradient between the device and the heat sink is included, leading to a <u>nonlinear relationship between the temperature increase and dissipated power</u>.
- Nonlinear self-heating results in a more accurate description (wider range of bias conditions)
 of IV-data and f_T-data.
- Nonlinear self-heating added in Mextram.
 - Available starting from release 505.4

ACKNOWLEDGEMENTS

• Prof. Guofu Niu and co-workers from Auburn University.

SECURE CONNECTIONS FOR A SMARTER WORLD

