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INTRODUCTION

• SiGe HBTs are high current-density devices with strong self-heating.

• Compact modeling with Mextram model under conditions of strong self-heating is challenging.

measurements – symbols

MEXTRAM - lines

Regime of strong self-heating (high VCE & high VBE) 

addressed in this presention.
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NONLINEAR SELF-HEATING

• What is nonlinear self-heating?

• Nonlinear self-heating refers to a nonlinear relationship between 

the temperature increase ∆𝑇 and dissipated power 𝑃𝑑𝑖𝑠𝑠, instead of a linear equation, i.e., ∆𝑇 = 𝑅𝑇𝐻 ∙ 𝑃𝑑𝑖𝑠𝑠.

• Nonlinear self-heating has been investigated for transistors, for example GaAs HBTs.1

• This presentation:

• Review of nonlinear self-heating in SiGe HBTs.

1. “Dependence of thermal resistance on ambient and actual temperature”, J.C.J. Paasschens et al., IEEE BCTM 2004
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SELF-HEATING AND THERMAL RESISTANCE

Device (heat source) 

at temperature TDEV

Ambient (heat sink) 

at temperature TAMB

RTH

Semiconductor material:

• Thermal conductivity 

depends on temperature*: 

𝜅 𝑇 = 𝜅𝑟𝑒𝑓
𝑇

𝑇𝑟𝑒𝑓

−𝛼

• Thermal resistance*:

𝑅𝑇𝐻 = 𝑅𝑇𝐻, 𝑟𝑒𝑓
𝑇

𝑇𝑟𝑒𝑓

𝛼

* 𝛼 thermal coefficient of the thermal resistance. Typical Si-value: 1.3 (ATH-model parameter in Mextram)



6PUBLIC

SELF-HEATING AND THERMAL RESISTANCE

Device (heat source) 

at temperature TDEV

Ambient (heat sink) 

at temperature TAMB

RTH

Semiconductor material:

• Thermal conductivity 

depends on temperature*: 

𝜅 𝑇 = 𝜅𝑟𝑒𝑓
𝑇

𝑇𝑟𝑒𝑓

−𝛼

• Thermal resistance*:

𝑅𝑇𝐻 = 𝑅𝑇𝐻, 𝑟𝑒𝑓
𝑇

𝑇𝑟𝑒𝑓

𝛼

* 𝛼 thermal coefficient of the thermal resistance. Typical Si-value: 1.3 (ATH-model parameter in Mextram)

Which temperature to use in the thermal resistance?

1. Thermal resistance dependent on ambient temperature.

• Good first order approximation.
(“most of the thermal resistance is close to 

the ambient temperature”)

• Implemented in Mextram.

2. Thermal resistance dependent on device temperature.

• Less realistic.

• It results in huge amounts of self-heating.

• See benchmark on the next slide.

3. Nonlinear self-heating.

• The temperature gradient between the device

and the heat sink is included,

leading to a nonlinear relationship 

between the temperature increase 

and dissipated power.
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COMPARISON OF SELF-HEATING MODELS

Thermal resistance dependent on ambient temperature

∆𝑇 = 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠

Nonlinear self-heating model (temperature gradient included)

∆𝑇 = 𝑇𝑎𝑚𝑏 ∙ 1 +
1 − 𝛼 ∙ 𝑅𝑇𝐻 𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠

𝑇𝑎𝑚𝑏

1
1−𝛼

− 1

Thermal resistance dependent on device temperature

∆𝑇 = 𝑅𝑇𝐻 𝑇𝑑𝑒𝑣𝑖𝑐𝑒 ∙ 𝑃𝑑𝑖𝑠𝑠

• Nonlinear self-heating model shows more self-heating in comparison to 

a thermal resistance dependent on the ambient temperature (linear self-heating ∆𝑇 = 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠)

• Thermal resistance dependent on the device temperature shows huge amounts of self-heating.

Not addressed further. 

𝑅𝑇𝐻 𝑇𝑎𝑚𝑏
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BACKGROUND SELF-HEATING

• Self-heating:

• Linear relationship between the temperature increase ∆𝑇 and dissipated power 𝑃𝑑𝑖𝑠𝑠 via the thermal resistance 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 .

• Implementation as a linear network in Mextram.

∆𝑇 = 𝑇𝑑𝑒𝑣 − 𝑇𝑎𝑚𝑏 = 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠 or 𝑃𝑑𝑖𝑠𝑠 =
∆𝑇

𝑅𝑇𝐻 𝑇𝑎𝑚𝑏

∆𝑇

𝑅𝑇𝐻𝑃𝑑𝑖𝑠𝑠
𝑑𝑒𝑣𝑖𝑐𝑒

𝐶𝑇𝐻

Mextram

Model parameters
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BACKGROUND NONLINEAR SELF-HEATING

• Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):

• Nonlinear relationship between the temperature increase ∆𝑇 and dissipated power 𝑃𝑑𝑖𝑠𝑠.

• Implementation

∆𝑇 = 𝑇𝑎𝑚𝑏 ∙ 1 +
1 − 𝛼 ∙ 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠

𝑇𝑎𝑚𝑏

1
1−𝛼

− 1 or 𝑃𝑑𝑖𝑠𝑠 =
𝑇𝑎𝑚𝑏

𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 1 − 𝛼
∙ 1 +

∆𝑇

𝑇𝑎𝑚𝑏

1−𝛼

− 1

∆𝑇

𝑃𝑑𝑖𝑠𝑠
𝑃𝑑𝑖𝑠𝑠
𝑑𝑒𝑣𝑖𝑐𝑒

𝐶𝑇𝐻

Mextram

Model parameters
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BACKGROUND NONLINEAR SELF-HEATING

• Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):

• Nonlinear relationship between the temperature increase ∆𝑇 and dissipated power 𝑃𝑑𝑖𝑠𝑠.

• Few remarks on the equations:

• The nonlinear equations reduce to linear self-heating in the limit of small amounts of dissipated powers or self-heating.

• The nonlinear equations are not defined for a temperature scaling constant 𝛼 = 1.

Equations for the temperature coefficient of the thermal resistance 𝛼 = 1 can be derived as well. 

∆𝑇 = 𝑇𝑎𝑚𝑏 ∙ 1 +
1 − 𝛼 ∙ 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠

𝑇𝑎𝑚𝑏

1
1−𝛼

− 1 or 𝑃𝑑𝑖𝑠𝑠 =
𝑇𝑎𝑚𝑏

𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 1 − 𝛼
∙ 1 +

∆𝑇

𝑇𝑎𝑚𝑏

1−𝛼

− 1

Taylor expansion: ∆𝑇 ≈ 𝑇𝑎𝑚𝑏 ∙ 1 +
𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙𝑃𝑑𝑖𝑠𝑠

𝑇𝑎𝑚𝑏
− 1 = 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠

𝛼 = 1 ∆𝑇 = 𝑇𝑎𝑚𝑏 ∙ 𝑒
Τ𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙𝑃𝑑𝑖𝑠𝑠 𝑇𝑎𝑚𝑏 − 1 or 𝑃𝑑𝑖𝑠𝑠 =

𝑇𝑎𝑚𝑏

𝑅𝑇𝐻 𝑇𝑎𝑚𝑏
∙ 𝑙𝑛 1 +

∆𝑇

𝑇𝑎𝑚𝑏



1 1PUBLIC

BACKGROUND NONLINEAR SELF-HEATING

• Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):

• Nonlinear relationship between the temperature increase ∆𝑇 and dissipated power 𝑃𝑑𝑖𝑠𝑠.

• Few remarks on the equations:

• The nonlinear equations reduce to linear self-heating in the limit of small amounts of dissipated powers or self-heating.

• There is a limit of high dissipation where ∆𝑇 cannot be calculated (𝛼 > 1 and 𝑃𝑑𝑖𝑠𝑠 >
𝑇𝑎𝑚𝑏

𝛼−1 ∙𝑅𝑇𝐻 𝑇𝑎𝑚𝑏
), 

which is explained as thermal runaway, i.e., there is more power dissipated that can be removed leading to an infinite temperature increase.

See next slide.

∆𝑇 = 𝑇𝑎𝑚𝑏 ∙ 1 +
1 − 𝛼 ∙ 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠

𝑇𝑎𝑚𝑏

1
1−𝛼

− 1 or 𝑃𝑑𝑖𝑠𝑠 =
𝑇𝑎𝑚𝑏

𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 1 − 𝛼
∙ 1 +

∆𝑇

𝑇𝑎𝑚𝑏

1−𝛼

− 1

Taylor expansion: ∆𝑇 ≈ 𝑇𝑎𝑚𝑏 ∙ 1 +
𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙𝑃𝑑𝑖𝑠𝑠

𝑇𝑎𝑚𝑏
− 1 = 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠
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SELF-HEATING, NONLINEAR SELF-HEATING AND THERMAL RUNAWAY

Thermal runaway effect in the equations occurs at very high device temperatures.

Note that the device temperature can be clipped in Mextram. (‘dtmax’ parameter)

Not of practical importance.

∆𝑇 = 𝑇𝑎𝑚𝑏 ∙ 1 +
1 − 𝛼 ∙ 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏 ∙ 𝑃𝑑𝑖𝑠𝑠

𝑇𝑎𝑚𝑏

1
1−𝛼

− 1

Thermal runaway:
• 𝛼 > 1
• 𝑃𝑑𝑖𝑠𝑠 above maximum removable power:

𝑇𝑎𝑚𝑏

𝛼 − 1 ∙ 𝑅𝑇𝐻 𝑇𝑎𝑚𝑏

detail
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EVALUATION NONLINEAR SELF-HEATING – LV

• Nonlinear self-heating turned on. No additional tuning of parameters.

• Collector current versus collector-emitter voltage.

VBE=0.75, 0.77, 0.79, 0.81, 0.83, 0.85 V

default nonlinear self-heating

‘dtmax’-clipping
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EVALUATION NONLINEAR SELF-HEATING – LV

• Nonlinear self-heating turned on. No additional tuning of parameters.

• Base current versus collector-emitter voltage.

VBE=0.75, 0.77, 0.79, 0.81, 0.83, 0.85 V

default nonlinear self-heating
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EVALUATION NONLINEAR SELF-HEATING – LV

• Nonlinear self-heating turned on. No additional tuning of parameters.

• Collector current versus base-emitter voltage.

• Note that peak fT is at VBE=0.85 V.

VCE=0.5, 0.8, 1.1, 1.4, 1.7 V

default nonlinear self-heating
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EVALUATION NONLINEAR SELF-HEATING – LV

• Nonlinear self-heating turned on. No additional tuning of parameters.

• Trans-conductance versus base-emitter voltage.

VCE=0.5, 0.8, 1.1, 1.4, 1.7 V

default nonlinear self-heating
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EVALUATION NONLINEAR SELF-HEATING – LV

• Nonlinear self-heating turned on. No additional tuning of parameters.

VCE=0.5, 0.8, 1.1, 1.4, 1.7 V

default nonlinear self-heating
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EVALUATION NONLINEAR SELF-HEATING – LV

• Nonlinear self-heating turned on. No additional tuning of parameters.

VBE=0.75, 0.77, 0.79, 0.81, 0.83, 0.85 V

default nonlinear self-heating
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STATUS MEXTRAM IMPLEMENTATION

• Nonlinear self-heating has been added to MEXTRAM by Auburn University. (NXP request)

• Available starting in release 505.4

• Parameter / switch ‘swnlsh’ introduced for backward compatibility.

• swnlsh=0 (default) : ‘normal’ self-heating.

• swnlsh=1 : nonlinear self-heating.

• Furthermore, no additional parameters. The same self-heating model parameters are used in nonlinear self-heating.
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CONCLUSIONS

• Nonlinear self-heating effect investigated for SiGe HBTs.

• Nonlinear self-heating: The temperature gradient between the device and the heat sink is included,

leading to a nonlinear relationship between the temperature increase and dissipated power.

• Nonlinear self-heating results in a more accurate description (wider range of bias conditions) 

of IV-data and fT-data.

• Nonlinear self-heating added in Mextram.

• Available starting from release 505.4
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