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INTRODUCTION

SiGe HBTSs are high current-density devices with strong self-heating.
Compact modeling with Mextram model under conditions of strong self-heating is challenging.
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NONLINEAR SELF-HEATING

* What is nonlinear self-heating?

* Nonlinear self-heating refers to a nonlinear relationship between
the temperature increase AT and dissipated power Py, instead of a linear equation, i.e., AT = Ry * Pgjjss-

* Nonlinear self-heating has been investigated for transistors, for example GaAs HBTs.!

» This presentation:
* Review of nonlinear self-heating in SiGe HBTSs.

1. “Dependence of thermal resistance on ambient and actual temperature”, J.C.J. Paasschens et al., IEEE BCTM 2004
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SELF-HEATING AND THERMAL RESISTANCE

Device (heat source)
at temperature Tpgy

Semiconductor material:

« Thermal conductivity
depends on temperature*:

T \"®
k(T) = Kref (T_f>
re

 Thermal resistance*:

T a
Rry = RTH,ref T_f
re

Ambient (heat sink)
at temperature Ty\g

* a thermal coefficient of the thermal resistance. Typical Si-value: 1.3 (ATH-model parameter in Mextram)



SELF-HEATING AND THERMAL RESISTANCE

Device (heat source)

at temperature Tpgy, Which temperature to use in the thermal resistance?
.

Y N 1. Thermal resistance dependent on ambient temperature.

« Good first order approximation.
(“most of the thermal resistance is close to

Semiconductor material: the ambient temperature”)

. Thermal conductivity * Implemented in Mextram.

depends on temperature*:

T -
K(T) - Kref ///
Tref 1

W 2. Thermal resistance dependent on device temperature.

\ * Less realistic.
 Thermal resistance*:

T a
Rry = RTH,ref _T P
re

« It results in huge amounts of self-heating.
» See benchmark on the next slide.

: : 3. Nonlinear self-heating.
Ambient (heat sink) J

« The temperature gradient between the device
at temperature Tyyg and the heat sink is included,
leading to a nonlinear relationship
between the temperature increase
and dissipated power.

* a thermal coefficient of the thermal resistance. Typical Si-value: 1.3 (ATH-model parameter in Mextram) b 74



COMPARISON OF SELF-HEATING MODELS

1000

800 ~

600 -

AT (K)

400 ~

200 4 Thermal resistance dependent on device temperature
AT = Rry (Tgevice) * Paiss
—

0.0 0.1 0.2 0.3 0.4 0.5
PNEE{vu}

* Nonlinear self-heating model shows more self-heating in comparison to
a thermal resistance dependent on the ambient temperature (linear self-heating AT = Ry (Tgmp) * Pgiss)

« Thermal resistance dependent on the device temperature shows huge amounts of self-heating.
Not addressed further.
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BACKGROUND SELF-HEATING

« Self-heating:

« Linear relationship between the temperature increase AT and dissipated power P,;.. via the thermal resistance Ryy (Tgmp)-

AT

AT =Tgep — Tagmp = Rry (Tamb) *Pyiss or Pyijgo = ———
RTH (Tamb)

* Implementation as a linear network in Mextram.

Mextram / AT
Model parameters
_/_I_\_ / Pgiigice] firn

Lo |



BACKGROUND NONLINEAR SELF-HEATING

Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):

Nonlinear relationship between the temperature increase AT and dissipated power P;;...

1

Tamb

(1—-a) - Rry (Tamp) Pdiss>m _1q

or Pyiss =
Tamb ]

AT == Tamb ° [(1 +

Rry (Tamb) (1-a) .

(1+

AT

Tamb

B

Implementation

Mextram / AT
Model parameters .
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BACKGROUND NONLINEAR SELF-HEATING

Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):

Nonlinear relationship between the temperature increase AT and dissipated power P;;...

1

AT == Tamb ° [(1 +

Tamb

(1—a) - Rrg (Tamp) * Paiss \1~¢
— 1| or Py

Tamb

- Rryg (Tamp) - (1 — a) .

(1+

AT

Tamb

B

Few remarks on the equations:
« The nonlinear equations reduce to linear self-heating in the limit of small amounts of dissipated powers or self-heating.

Taylor expansion:

AT % Tomp - |1+

RrH (Tamp)-Pdiss

Tamb

- 1]= RTH (Tamb) ‘ Pdiss

« The nonlinear equations are not defined for a temperature scaling constant o = 1.
Equations for the temperature coefficient of the thermal resistance a« = 1 can be derived as well.

a=1

AT =Tymp - [eRTH(Tamb)'Pdiss/Tamb — 1] or Py = Tamb

RtH (T amp)

-ln(1+

AT
Tamb

)
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BACKGROUND NONLINEAR SELF-HEATING

* Nonlinear self-heating (as a result of including the temperature gradient between the device and heat-sink):

(1 o AT ) !
Tamb

* Nonlinear relationship between the temperature increase AT and dissipated power P;;...

1
(1-a)- Rry (Tamb) ) Pdiss>1_a 1
Tamb

Tamb .
Rry (Tamb) (1-a)

AT = Tamb . [(1 + ] or PdiSS =

* Few remarks on the equations:
« The nonlinear equations reduce to linear self-heating in the limit of small amounts of dissipated powers or self-heating.

Taylor expansion: AT ~ Typp - [1 + P (TT“mb)'PdiSS — 1]= Rry (Tamp) * Paiss
amb

Tamp
(a—1Rry (Tamp) '
which is explained as thermal runaway, i.e., there is more power dissipated that can be removed leading to an infinite temperature increase.
See next slide.

» There is a limit of high dissipation where AT cannot be calculated (« > 1 and Py;ss >
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SELF-HEATING, NONLINEAR SELF-HEATING AND THERMAL RUNAWAY
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AT = Tomp -

s MW nonlinear self-heating
== Rgw= 1000 KW
—— max. removable power

1

<1 n (1 - a) *Rry (Tamb) ’ Pdiss>m 1

Tamb

|

e a>1

0.0

T
0.2
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Paiss (W)

Thermal runaway:

* P;i,c above maximum removable power:

Tamb

(@ —=1) - Rry (Tamp)

Thermal runaway effect in the equations occurs at very high device temperatures.
Note that the device temperature can be clipped in Mextram. (‘dtmax’ parameter)

Not of practical importance.
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EVALUATION NONLINEAR SELF-HEATING = LV
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Nonlinear self-heating turned on. No additional tuning of parameters.
Collector current versus collector-emitter voltage.

Vge=0.75, 0.77, 0.79,

‘dtmax’ -clipping
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EVALUATION NONLINEAR SELF-HEATING = LV

™~
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Nonlinear self-heating turned on. No additional tuning of parameters.

Base current versus collector-emitter voltage.

Vge=0.75, 0.77, 0.79,

nonlinear self-heating

, .85V
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EVALUATION NONLINEAR SELF-HEATING = LV

™~
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* Nonlinear self-heating turned on. No additional tuning of parameters.
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» Collector current versus base-emitter voltage.

Note that peak f; is at Vgz=0.85 V.

Vee=0.5, 0.8, 1.1,
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EVALUATION NONLINEAR SELF-HEATING = LV Vee=0.5,0.8, 1.1,

default nonlinear self-heating
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* Nonlinear self-heating turned on. No additional tuning of parameters.
* Trans-conductance versus base-emitter voltage.
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EVALUATION NONLINEAR SELF-HEATING = LV

™~
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Nonlinear self-heating turned on. No additional tuning of parameters.

Vee=0.5, 0.8, 1.1,
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EVALUATION NONLINEAR SELF-HEATING = LV
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STATUS MEXTRAM IMPLEMENTATION

* Nonlinear self-heating has been added to MEXTRAM by Auburn University. (NXP request)

« Available starting in release 505.4
« Parameter/ switch *swnlsh’ introduced for backward compatibility.
* swnlsh=0 (default): ‘normal’ self-heating.

 swnlsh=1 : nonlinear self-heating.

* Furthermore, no additional parameters. The same self-heating model parameters are used in nonlinear self-heating.

21
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CONCLUSIONS

* Nonlinear self-heating effect investigated for SiGe HBTSs.

* Nonlinear self-heating: The temperature gradient between the device and the heat sink is included,
leading to a nonlinear relationship between the temperature increase and dissipated power.

* Nonlinear self-heating results in a more accurate description (wider range of bias conditions)
of IV-data and f-data.

* Nonlinear self-heating added in Mextram.
« Available starting from release 505.4
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