

A *Novel* FoM for Determining the Base Resistance of Bipolar Transistor

35th AKB Workshop November 9th/10th, 2023

Didier Céli

Outline (1/2)

- Introduction
- HICUM/L2 base resistance model overview
- Impact of the model parameters on the bias dependence of the base resistance
- R_{BCE} FoM for base resistance determination
 - Impact of R_E and R_{CX}
 - Frequency range for R_{BCE} computation
- Validation using synthetic data (sensitivity analysis)
 - Effect of R_{BIO} , R_{BX} , F_{GEO} , F_{DQRO} , F_{QI}
- Impact of the complexity of the small-signal equivalent circuit
 - Effect of R_E, R_{CX}, R_{BI0}, R_{BX}
 - Effect of the capacitance partitioning (BE and BC) along the base resistances
 - F_{BEPAR}, split of C_{JE}
 - F_{BCPAR}, split of C_{JC}
 - Effect of the substrate network

AKB 2023 - dm096a.23

Outline (2/2)

- Experimental results
 - ullet R_{BCE} versus emitter width
 - \bullet Extraction of base resistance model parameters from $R_{\mbox{\footnotesize{BCE}}}$ and $f_{\mbox{\footnotesize{max}}}$
- Conclusion and outlook...

AKB 2023 - dm096a.23 2/59

Introduction (1/2)

- The base series resistances (intrinsic and extrinsic) are very important parameters for bipolar junction transistors (BJTs) or heterojunction bipolar transistors (HBTs)
- The base series resistances impact strongly the speed and the RF performances of bipolar transistors
 - Propagation delay time
 - Maximum oscillation frequency (f_{max})
 - Noise figure
- The accurate determination of the base series resistances is crucial
 - For the development and the optimization of new bipolar devices
 - For realistic simulations of RF integrated circuits
- Since many years, in literature, several methods have been proposed for the determination of the base series resistance
- Unfortunately, as well reported in [1], by A. Pawlak et al., the determination of the base resistance on single transistor is either impossible or very inaccurate

Single Transistor-Based Methods for Determining the Base Resistance in SiGe HBTs: Review and Evaluation Across Different Technologies

Andreas Pawlak, Julia Krause, Holger Wittkopf, and Michael Schröter, Senior Member, IEEE

AKB 2023 - dm096a.23 3/59

Introduction (2/2)

- In these slides we will review and evaluate the Figure of Merit (FoM)
 - R_{BCE} function

proposed in [2] by Z. Huszka et al. for the determination of the base resistance

An Extended Two-Port Method for the Determination of the Base and Emitter Resistance

Z. Huszka, E. Seebacher and W. Pflanzl austriamicrosystems AG, Schloss Premstätten A8141 Unterpremstätten, Austria e_mail: zoltan.huszka@austriamicrosystems.com

- In fact, this FoM is not new, already published in [2], what is new is its use in evaluating and determining the base series resistances of BJTs or HBTs.
 - Not reviewed in [1]

AKB 2023 - dm096a.23 4/59

Base resistance model (1/2)

- In HICUM/L2 the equation describing the bias dependence of the base series resistances is quite sophisticated compared with the SGP model
- Both conductivity modulation, emitter current crowding and impact of peripheral charges are taken into account

$$\mathsf{R}_{\mathsf{Total}} = \mathsf{R}_{\mathsf{BIO}} \cdot \underbrace{\frac{\mathsf{Q}_0}{\mathsf{Q}_0 + \Delta \mathsf{Q}_p}}_{\mathsf{Conductivity modulation}} \cdot \underbrace{\frac{\mathsf{ln}(1+\eta)}{\eta}}_{\mathsf{U}} \cdot \underbrace{\frac{\mathsf{Q}_{\mathsf{JEi}} + \mathsf{Q}_{\mathsf{f}} \cdot \mathsf{F}_{\mathsf{QI}}}{\mathsf{Q}_{\mathsf{JEi}} + \mathsf{Q}_{\mathsf{f}}}}_{\mathsf{Peripheral charge}} + \mathsf{R}_{\mathsf{BX}} \quad \mathsf{with}$$

$$Q_0 = Q_{P0} \cdot (1 + F_{DQR0})$$

$$\Delta Q_p \approx Q_{JEi} + Q_{JCi} + Q_f$$

$$\eta \ = \ \frac{R_i \cdot I_{BEi}}{V_T} \cdot \textbf{F}_{\textbf{GEO}} \quad \text{where} \quad R_i \ = \ \textbf{R}_{\textbf{BIO}} \cdot \frac{Q_0}{Q_0 + \Delta Q_p}$$

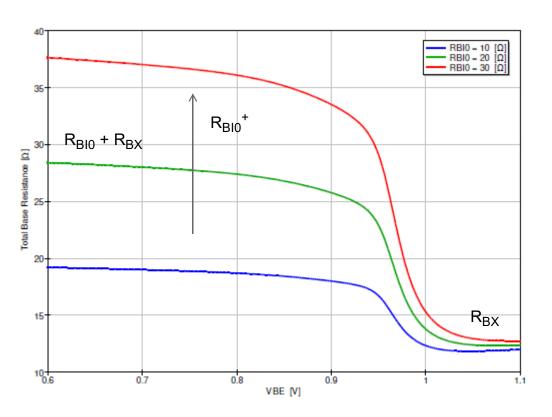
• If
$$\eta$$
 is small (< 10⁻⁶), $\frac{ln(1+\eta)}{\eta}$ is approximated by $\frac{ln(1+\eta)}{\eta} \approx 1 - \frac{\eta}{2}$

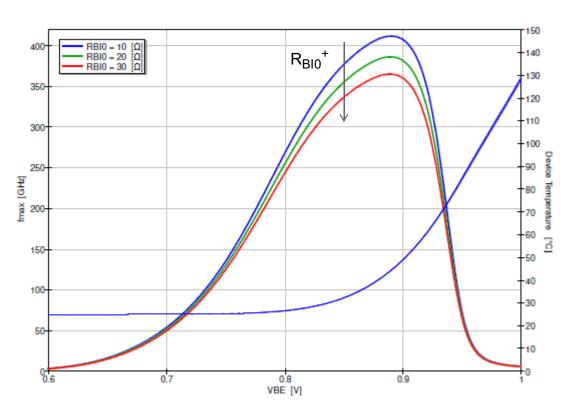
5/59

Base resistance model (2/2)

HICUM/L2 parameter list describing the bias dependence of the total base resistance

Parameter	Signification	Unit	Default	Min	MAX
R _{BI0}	Zero-bias intrinsic resistance	Ω	0	0	∞
R _{BX}	Extrinsic base resistance	Ω	0	0	∞
F _{GEO}	Factor for geometry dependence of emitter current crowding		0.6557	0	8
F _{DQR0}	Correction factor for modulation by BE and BC space charge layer		0	-0.5	100
F _{Ql}	Ratio of internal to total minority charge		1	0	1

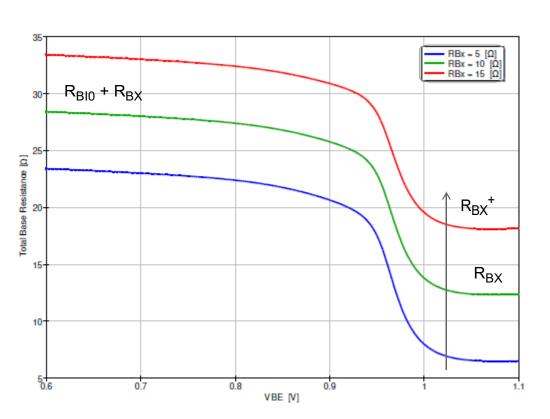

In order to better understand the relations between the model and the electrical characteristics, the total base resistance (intrinsic + extrinsic) is plotted versus V_{BE} at V_{BC} = 0 V, for different values of the model parameters (above table)

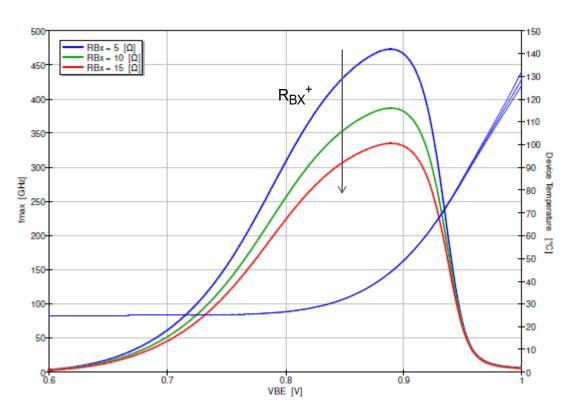


AKB 2023 - dm096a.23 6/59

Effect of R_{BI0}

- Impact of R_{Bl0} on both the base resistance and f_{max} characteristics at V_{BC} = 0 V
 - ullet As expected, the zero-bias intrinsic resistance affects mainly the base resistance at low V_{BE} .
 - If R_{BI0} increases the peak f_{max} decreases.

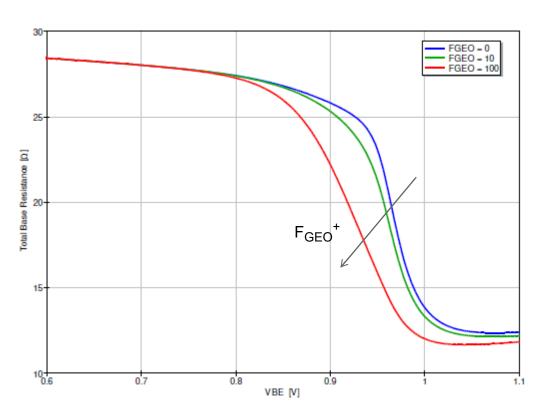


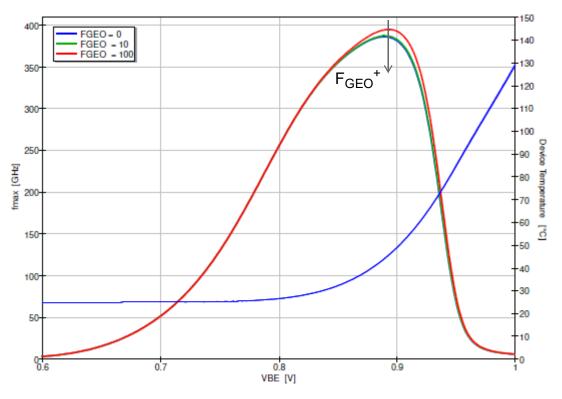


AKB 2023 - dm096a.23 7/59

Effect of R_{BX}

- Impact of R_{BX} on both the base resistance and f_{max} characteristics at $V_{BC} = 0 \text{ V}$
 - ullet The extrinsic base resistance R_{BX} has a greater impact on f_{max} than the intrinsic base resistance R_{BI0}

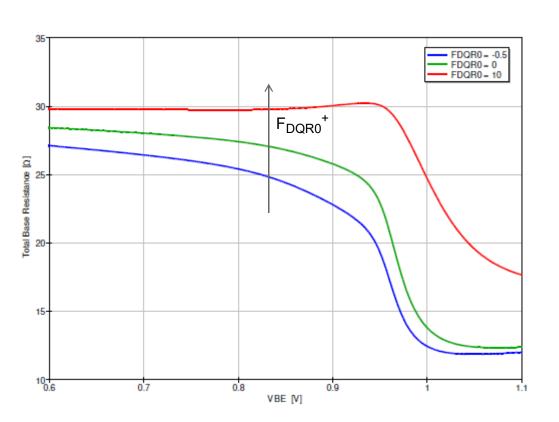


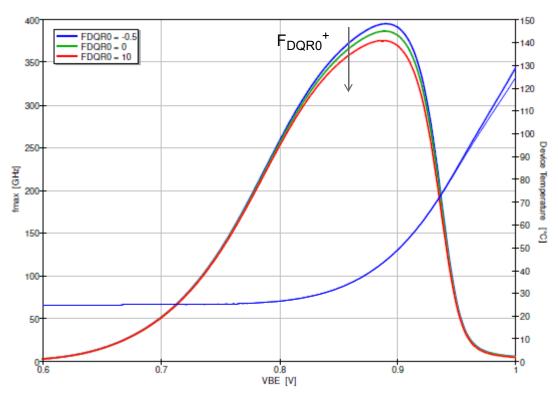


AKB 2023 - dm096a.23

Effect of F_{GEO}

- Impact of F_{GEO} on both the base resistance and f_{max} characteristics at V_{BC} = 0 V
 - ullet The F_{GEO} factor is used to adjust the bias dependence of R_{BIO} at high currents
 - If F_{GEO} increases, R_{BIO} decreases at a lower current density
 - Only a **very high** value of F_{GEO} has an impact on fmax

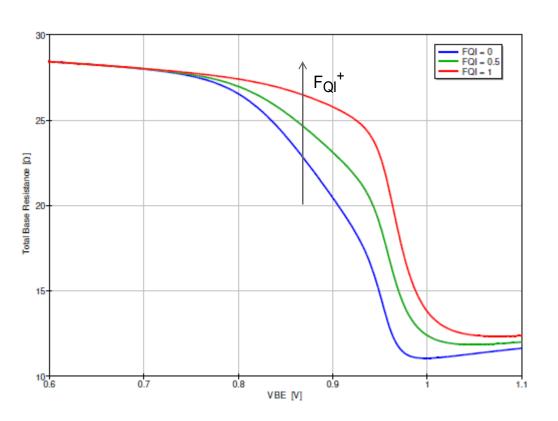


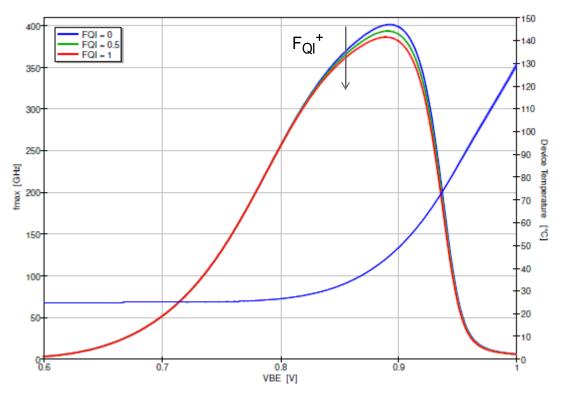


AKB 2023 - dm096a.23

Effect of F_{DQR0}

- Impact of F_{DQR0} on both base resistance and f_{max} characteristics at V_{BC} = 0 V
 - ullet Used to adjust the value of the intrinsic base resistance R_{BI} . R_{BI} increases with F_{DQR0}
 - Has also an impact at high currents
 - Peak f_{max} decreases if F_{DQR0} increases





AKB 2023 - dm096a.23 10/59

Effect of F_{QI}

- Impact of F_{QI} on both the base resistance and f_{max} characteristics at $V_{BC} = 0$ V
 - Like F_{GEO}, this parameter adjusts the intrinsic base resistance drop at high currents (**default value is 1**).
 - \bullet Has a little impact on the peak $f_{\mbox{\scriptsize max}}$
 - f_{max} decreases if F_{QI} increases.

AKB 2023 - dm096a.23

FoM for Base resistance determination (1/3)

The FoM used for the base resistance estimation is derived from the R_{BCE} function introduced in [2]

Prerequisites and assumption

- The small-signal measurements are de-embedded from R_{CX} (see Appendix A)
 - R_{CX} is evaluated from the measurement of sheet resistances of the extrinsic collector and from the layout of the transistor as described in [3] and [4]
- For simplicity, the correcting factor *cf* (equation (16) in [2]) is neglected
- The emitter resistance is determined using the method described in [5]
 - A QucsStudio worksheet in given in Appendix B

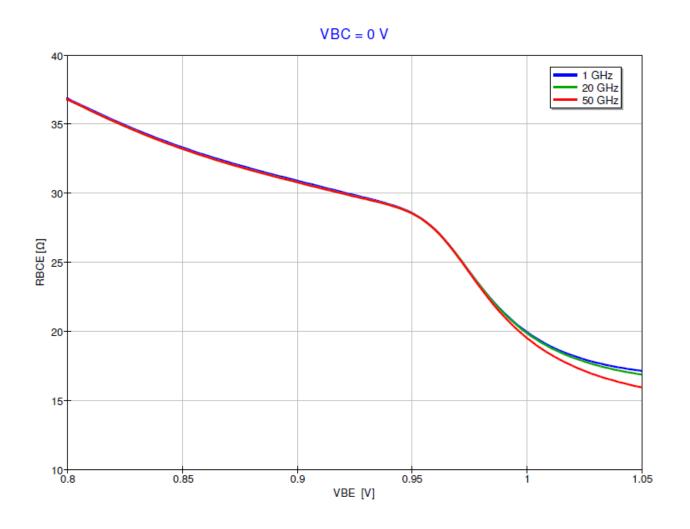
The R_{BCE} FoM

• In order to remove the transfer components between the input and the output, modified y-parameters are used

$$\begin{cases} \tilde{y}_{11e} = y_{11e} + y_{12e} \\ \tilde{y}_{21e} = y_{21e} - y_{12e} \end{cases} \text{ and } \begin{cases} \tilde{h}_{11e} = \frac{1}{\tilde{y}_{11e}} \\ \tilde{h}_{21e} = \frac{\tilde{y}_{21e}}{\tilde{y}_{11e}} \end{cases} \text{ then } R_{BCE} \text{ is computed [6], at a spot frequency, from } \\ R_{BCE} = \frac{\mathfrak{I}(\tilde{h}_{11e} \cdot \text{conj}(\tilde{h}_{21e}))}{-\mathfrak{I}(\tilde{h}_{21e})} \end{cases}$$

$$R_{BCE} = \frac{\Im(\tilde{h}_{11e} \cdot \text{conj}(\tilde{h}_{21e}))}{-\Im(\tilde{h}_{21e})}$$
(1)

• In first approximation we can demonstrate [2]


$$R_{BCE} \approx R_{Bi} + R_{Bx} + R_{E}$$

• To remove the impact of R_F , the measured R_F [5], [6] (see also Appendix B) is subtracted from R_{BCF}

12/59 AKB 2023 - dm096a.23

FoM for Base resistance determination (2/3)

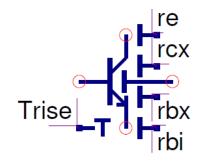
- Contrary to the semi-circle method [7], [8], [9], the determination of R_{BCE} from (1) is virtually independent on the spot frequency used
 - Recommended values between 10 and 20 GHz

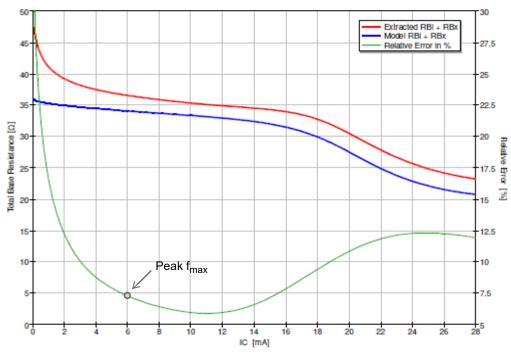
AKB 2023 - dm096a.23 13/59

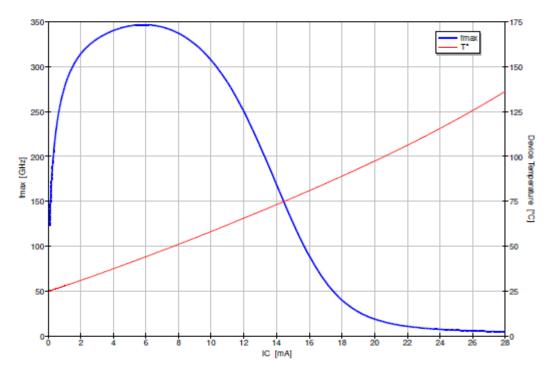
FoM for Base resistance determination (3/3)

Impact of R_{CX} de-embedding

- In high-speed advanced HBTs, the external collector resistance R_{CX} is relatively small, so the impact of R_{CX} is only visible at low V_{BE} (i.e. low current), before the peak f_{max} .
- Red curves without R_{CX} de-embedding
- Blue curves with RCX de-embedding
- Dashed lines R_E removed




AKB 2023 - dm096a.23 14/59


Validation based on synthetic data

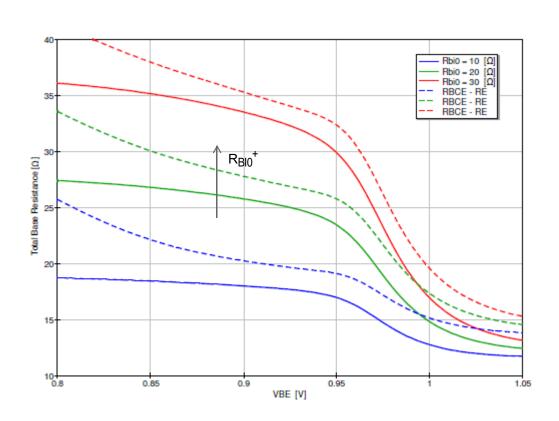
From a *realistic* model card R_{Bi} + R_{Bx} is computed (V_{BC} = 0V) from R_{BCE} - R_{E} (red curve) and compared, with QucsStudio [10], to the true value of R_{Bi} + R_{Bx} (blue curve) coming from the model using a *strobe* transistor [11] as described in Appendix C

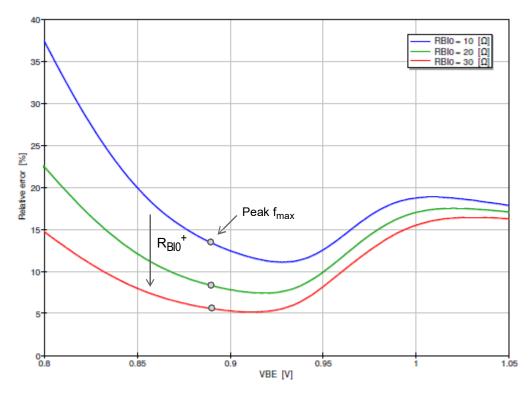
- Over a wide range of I_C, before and after the f_{max} peak, the shape of the two curves is similar.
- The difference between the 2 curves is between 5 and 12.5%, which is more than acceptable.
 - Is there another method that can determine the bias dependence of the base resistance, from *synthetic* data, with an accuracy better than 10 %?

AKB 2023 - dm096a.23 15/59

Sensitivity analysis

■ To further validate this R_{BCE} FoM, we will compare the impact of the parameters (describing the dependence of the bias on the total resistance of the base)

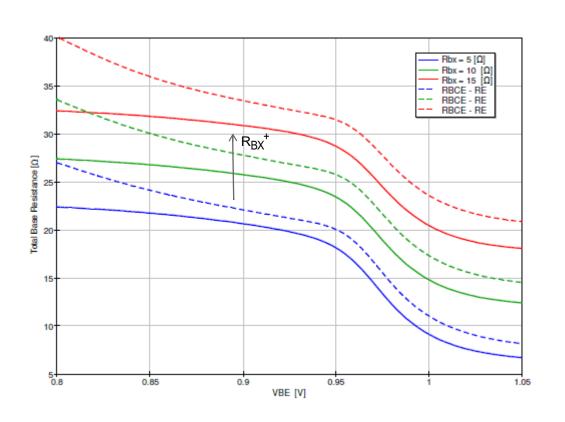

• R_{BI0}, R_{BX}, F_{GEO}, F_{DQR0}, F_{QI} on the base resistance model and on R_{BCE} - R_E

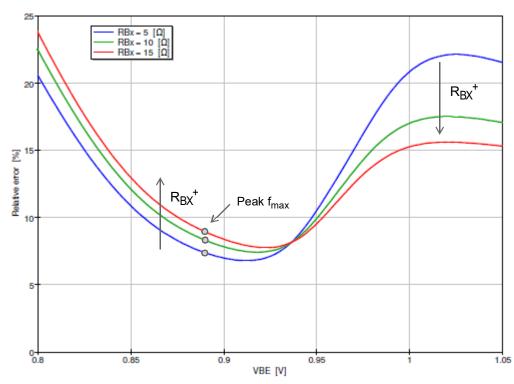


AKB 2023 - dm096a.23 16/59

Effect of R_{BI0}

- Similar shape between the model (solid line) and the R_{BCE} R_E FoM (dashed line), whatever the value of R_{Bl0} (from 10 to 30 Ω)
- Difference between model and R_{BCE} R_{E} FoM less than 15% around the peak f_{max} (V_{BE} = 0.89 V) where the impact of R_{BI0} is greatest

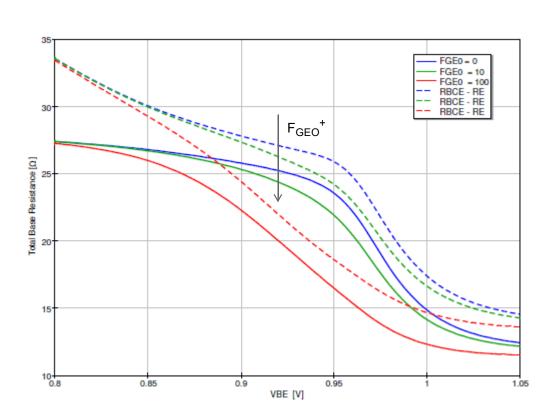


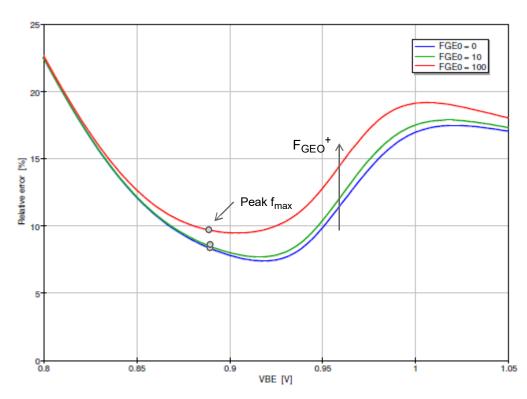


AKB 2023 - dm096a.23 17/59

Effect of R_{BX}

- Similar shape between the model (solid line) and the R_{BCE} R_E FoM (dashed line), whatever the value of R_{BX} (from 5 to 15 Ω)
- Difference between model and R_{BCE} R_{E} FoM less than 10% around the peak f_{max} (V_{BE} = 0.89 V) where the impact of R_{BX} is greatest

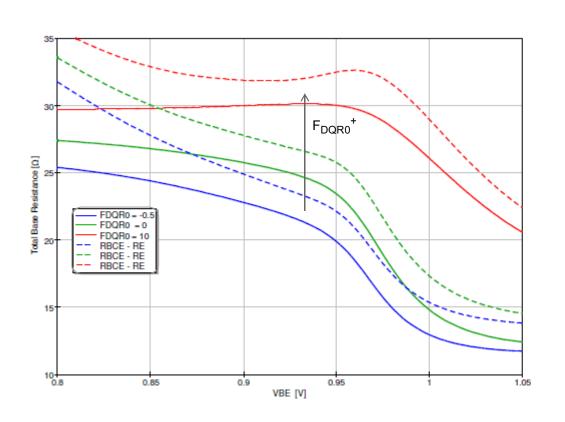


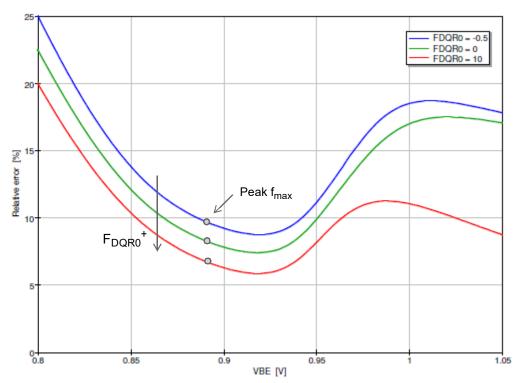


AKB 2023 - dm096a.23 18/59

Effect of F_{GEO}

- Similar shape between the model (solid line) and the R_{BCE} R_E FoM (dashed line), whatever the value of F_{GEO} (from 0 to 100, default value 0.66)
- Difference between model and R_{BCE} R_{E} FoM less than 10% around the peak f_{max} (V_{BE} = 0.89 V) where the impact of F_{GEO} is greatest

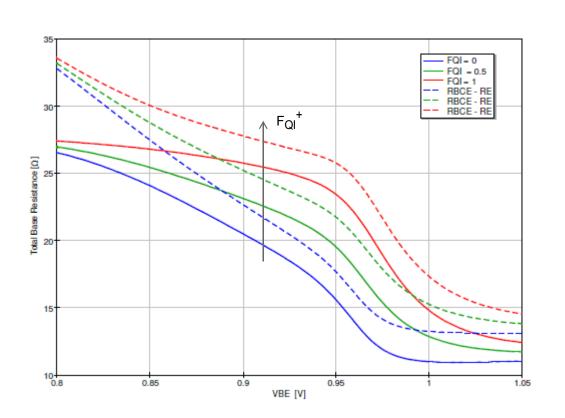


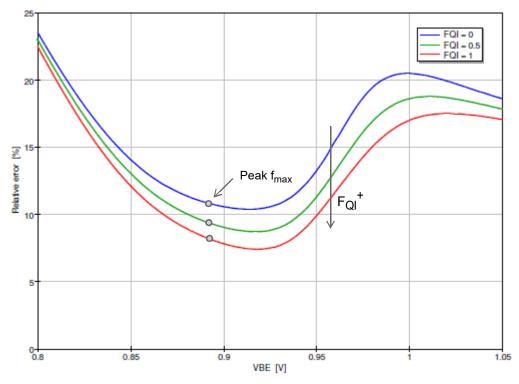


AKB 2023 - dm096a.23 19/59

Effect of F_{DQR0}

- Similar shape between the model (solid line) and the R_{BCE} R_E FoM (dashed line), whatever the value of F_{DQR0} (from -0.5 to 10, default value 0)
- Difference between model and R_{BCE} R_{E} FoM less than 10% around the peak f_{max} (V_{BE} = 0.89 V) where the impact of F_{DQR0} is greatest





AKB 2023 - dm096a.23 20/59

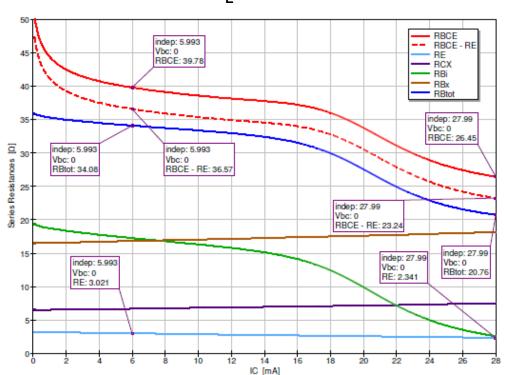
Effect of F_{QI}

- Similar shape between the model (solid line) and the R_{BCE} R_E FoM (dashed line), whatever the value of F_{QI} (from 0 to 1, default value 1)
- Difference between model and R_{BCE} R_{E} FoM less than 12% around the peak f_{max} (V_{BE} = 0.89 V) where the impact of F_{QI} is greatest

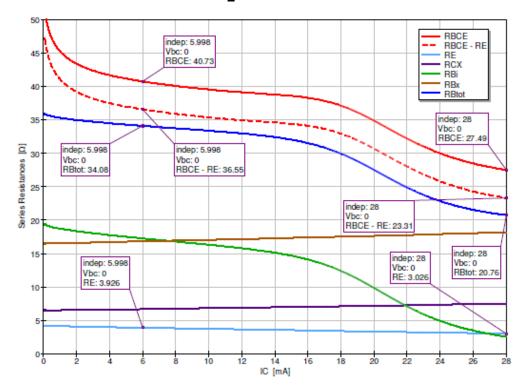
AKB 2023 - dm096a.23 21/59

Impact of the topology of the small signal EC

- Equation (1) has been derived in [5], [6], assumed a simplified small signal equivalent circuit (EC) in comparison with the full small signal EC of HICUM/L2
- In the following slides, we will look at the impact on the R_{BCE} FoM of some elements and of the topology of the EC
 - Emitter resistance
 - Collector resistance
 - Intrinsic base resistance
 - Extrinsic base resistance
 - Split of C_{BEPAR}
 - Split of C_{JBE}
 - Split of C_{BCX}
 - Split of C_{JBC}
 - Substrate network



AKB 2023 - dm096a.23 22/59


Impact of R_E (1/2)

Parameter		R _{BCE} -	R _E [Ω]	R _{Btot} model [Ω]		f _{max} [GHz]	
		6 mA	28 mA	6 mA	28 mA	6 mA	28 mA
R _E [Ω]	3.215	36.57	23.24	34.08	20.76	346.7	4.807
	4.180	36.55	23.31	34.00		344.4	4.611
Deviation	30 %	0.055 %	0.301 %			0.663 %	4.077 %

 R_E = 3.215 Ω

 $R_{E} = 4.180 \Omega$

AKB 2023 - dm096a.23 23/59

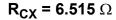
Impact of R_E (2/2)

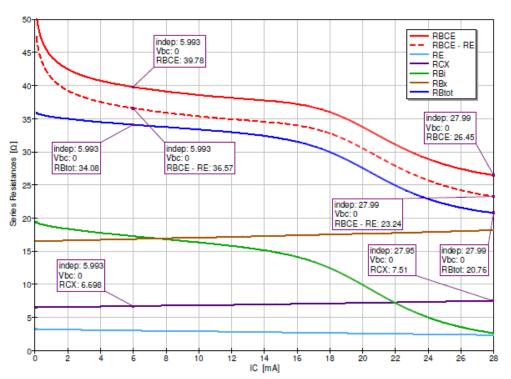
We vary R_E by 30% of its nominal value

We are looking at the impact on

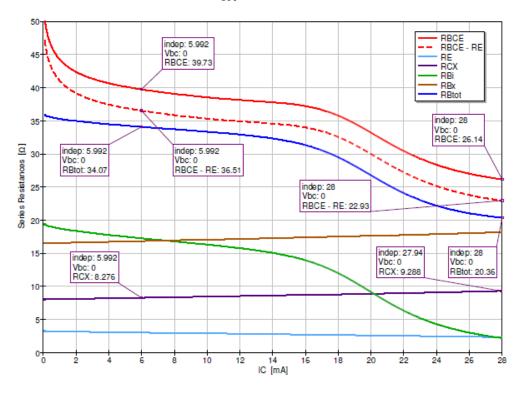
- the FoM R_{BCF} R_F at 2 collector currents
 - Near the peak f_{max} 6 mA
 - Far from the peak f_{max} 28 mA
- and f_{max} at the 2 collector currents

Comments


- Despite a 30% variation in R_E , no impact on R_{BCE} R_E
 - This means that the impact of R_E on R_{BCE} is not affected by other elements of the EC.
 - In other words, R_{BCE} is only influenced by the accuracy of R_E estimate.
 - Fortunately, R_E (and its uncertainty) is lower than R_{BCE}
- Negligible impact on f_{max}



AKB 2023 - dm096a.23 24/59


Impact of R_{CX} (1/2)

Parameter		R _{BCE} -	R _E [Ω]	R_{Btot} model [Ω] f_{max}		[GHz]	
i aiaii	r ai ailletei		28 mA	6 mA	28 mA	6 mA	28 mA
R _{CX} [Ω]	6.515	36.57	23.24	34.08	20.76	346.7	4.807
LCX [72]	8.047	36.51	22.93	34.07	20.36	345.7	4.133
Deviation	30 %	0.164 %	1.334 %	0.029 %	1.927 %	0.288 %	14.02 %

 $R_{CX} = 8.047 \Omega$

AKB 2023 - dm096a.23 25/59

Impact of R_{CX} (2/2)

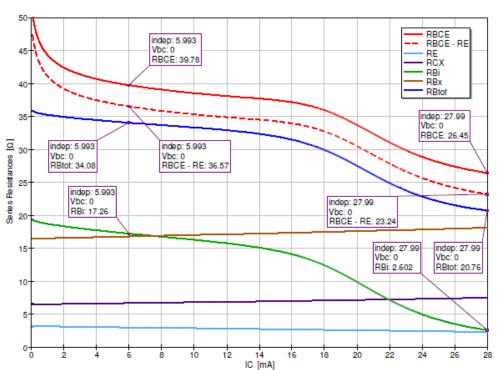
We vary R_{CX} by 30% of its nominal value

We are looking at the impact on

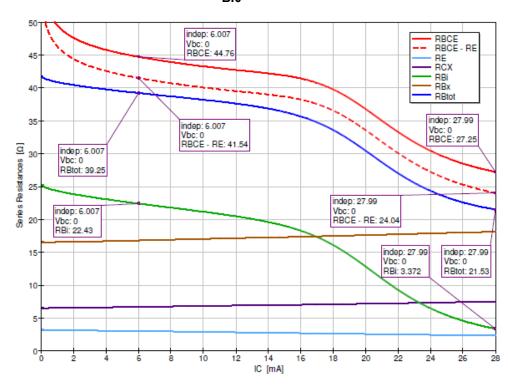
- \bullet the FoM R_{BCE} R_{E} at 2 collector currents
 - Near the peak f_{max}
 6 mA
 - Far from the peak f_{max} 28 mA
- and f_{max} at the 2 collector currents

Comments

- Despite a 30% variation in R_{CX} , no significant impact on R_{BCE} R_E
 - This means the impact of R_{CX} on R_{BCE} is well de-embedded (see Appendix A)
- Negligible impact on f_{max} at its peak, but more important effect at very high current
- The small variation of the simulated base resistance R_{Btot} is due to the fact that the internal V_{BC} is not constant as the result of the variation in R_{CX}



AKB 2023 - dm096a.23 26/59


Impact of R_{BI0} (1/2)

Parameter		R _{BCE} -	R _E [Ω]	R_{Btot} model [Ω] f_{max} [[GHz]	
		6 mA	28 mA	6 mA	28 mA	6 mA	28 mA
R _{BI0} [Ω]	21.79	36.57	23.24	34.08	20.76	346.7	4.807
L'BIO [75]	28.33	41.54	24.04	39.25	21.53	337.1	4.723
Deviation	30 %	13.59 %	3.44 %	15.17 %	3.71 %	2.77 %	1.75 %

 R_{BI0} = 21.79 Ω

 $R_{BI0} = 28.33 \Omega$

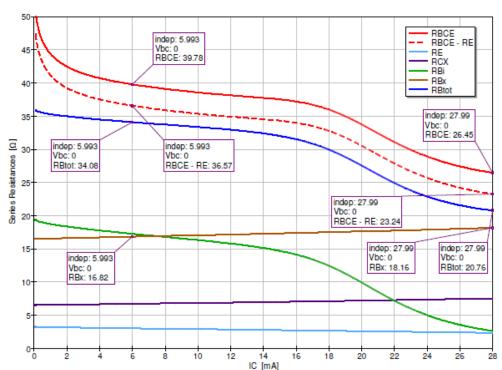
AKB 2023 - dm096a.23 27/59

Impact of R_{BI0} (2/2)

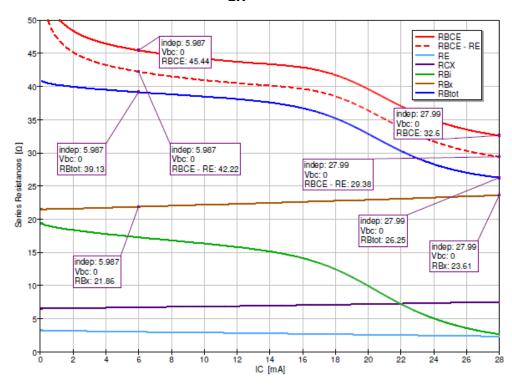
- We vary R_{BI0} by 30% of its nominal value
- We are looking at the impact on
 - \bullet the FoM R_{BCE} R_{E} at 2 collector currents
 - Near the peak f_{max}
 6 mA
 - Far from the peak f_{max} 28 mA
 - and f_{max} at the 2 collector currents

Comments

- Changes in R_{BI0} have a significant impact on R_{BCE} R_E
- It is also interesting to note is that the impact of R_{BI0} on R_{BCE} R_E is similar to the impact on the simulated base resistance R_{Btot}
 - This confirms once again that R_{BCE} R_E is strongly correlated with R_{Btot}
- Changes in R_{BI0} of 30% has a small impact on f_{max}



AKB 2023 - dm096a.23 28/59


Impact of R_{BX} (1/2)

Parameter		R _{BCE} -	R _E [Ω]	R _{Btot} m	$_{ m t}$ model [Ω] f _{max} [GH		[GHz]
		6 mA	28 mA	6 mA	28 mA	6 mA	28 mA
R _{BX} [Ω]	16.51	36.57	23.24	34.08	20.76	346.7	4.807
LBX [72]	21.46	42.25	29.38	39.13	26.25	311.0	4.388
Deviation	30 %	15.53 %	26.42 %	14.82 %	26.45 %	10.30 %	8.72 %

 $R_{BX} = 21.46 \Omega$

AKB 2023 - dm096a.23 29/59

Impact of R_{BX} (2/2)

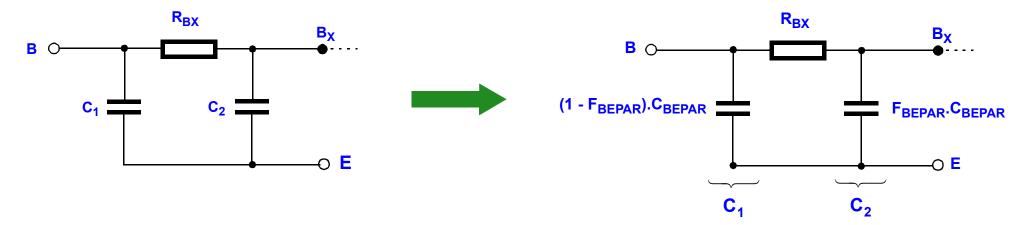
- We vary R_{BX} by 30% of its nominal value
- We are looking at the impact on
 - \bullet the FoM R_{BCE} R_{E} at 2 collector currents
 - Near the peak f_{max}
 6 mA
 - Far from the peak f_{max} 28 mA
 - and f_{max} at the 2 collector currents

Comments

- Changes in R_{BX} have a significant impact on R_{BCE} R_E
- It is also interesting to note is that the impact of R_{BX} on R_{BCE} R_E is similar to the impact on the simulated base resistance R_{Btot}
 - This confirms once again that R_{BCE} R_E is strongly correlated with R_{Btot}
- Contrary to RBI0, changes in R_{BX} of 30% has a significant impact on f_{max}

AKB 2023 - dm096a.23

Conclusion

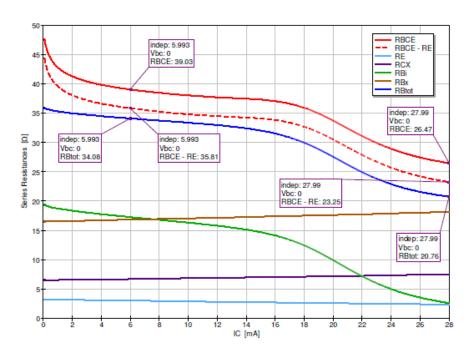

- This first analysis demonstrates
 - \bullet That the $R_{\mbox{\footnotesize{BCE}}}$ $R_{\mbox{\footnotesize{E}}}$ FoM is not sensitive to the emitter and collector series resistances
 - R_{BCE} is de-embedded from R_{CX}
 - In the opposite R_{BCE} R_E is very sensitive to the intrinsic and extrinsic base series resistances
- The question now is whether the topology of the small signal equivalent circuit has an impact on the R_{BCE} - R_E
 - Split of oxide and BE junction capacitance along the base resistance
 - Split of oxide and BC junction capacitance along the base resistance
 - Substrate network

AKB 2023 - dm096a.23 31/59

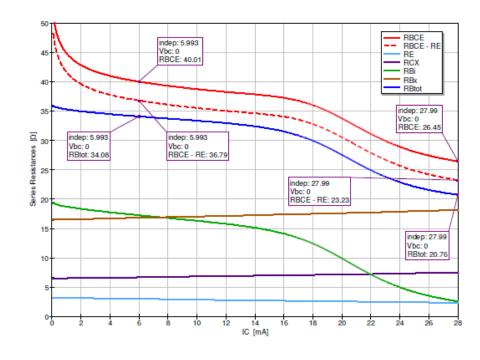
Impact of F_{BEPAR} (1/3)

- The parasitic BE oxide capacitances is distributed along the base resistance
- For a compact model, a lumped representation is required. In HICUM/L2 two parasitics capacitances C₁ and C₂ are included in the equivalent circuit, respectively connected to the terminal base node B and to the external base node B_x

$$\begin{cases} C_1 = (1 - F_{BEPAR}) \cdot C_{BEPAR} \\ C_2 = F_{BEPAR} \cdot C_{BEPAR} \end{cases}$$



AKB 2023 - dm096a.23 32/59


Impact of F_{BEPAR} (2/3)

Parameter		R _{BCE} -	R _E [Ω]	R_{Btot} model [Ω]		f _{max} [GHz]	
		6 mA	28 mA	6 mA	28 mA	6 mA	28 mA
	0.77 (reference value)	36.57	23.24		20.76	346.7	4.807
F _{BEPAR}	0	35.81	23.25	34.08		352.4	4.808
	1	36.79	23.23			345.0	4.806
Deviation between 0 and 1		2.73 %	0.086 %			2.10 %	0.042 %

 $F_{BEPAR} = 0$

 $F_{BEPAR} = 1$

AKB 2023 - dm096a.23 33/59

Impact of F_{BEPAR} (3/3)

We set F_{BFPAR} to 0 and 1

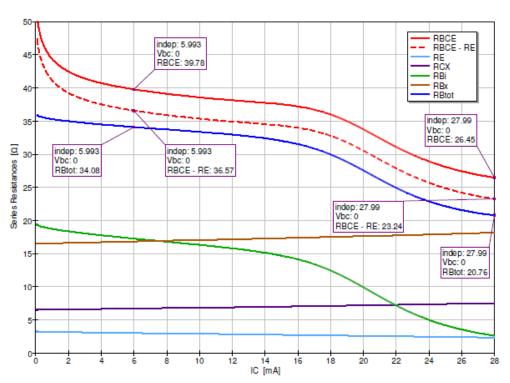
- For F_{BEPAR} = 0 the parasitic BE capacitance is connected to the terminal base node
- For F_{BEPAR} = 1 the parasitic BE capacitance is connected to the extrinsic base node (between the extrinsic and the intrinsic base resistance)

We are looking at the impact on

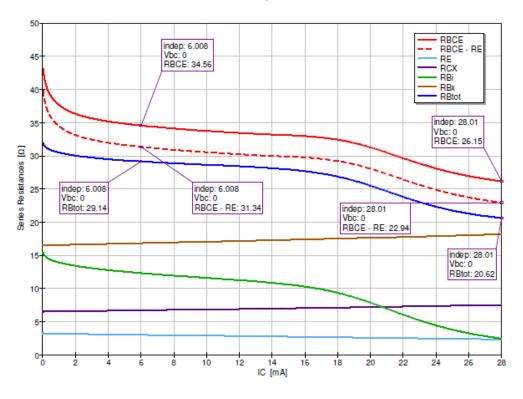
- the FoM R_{BCE} R_E at 2 collector currents
 - Near the peak f_{max} 6 mA
 - Far from the peak f_{max} 28 mA
- and f_{max} at the 2 collector currents

Comments

• $F_{\mbox{\footnotesize{BEPAR}}}$ has a negligible impact on both $R_{\mbox{\footnotesize{BCE}}}$ - $R_{\mbox{\footnotesize{E}}}$ and $f_{\mbox{\footnotesize{max}}}$



AKB 2023 - dm096a.23 34/59


Effect of C_{JBE} Split (1/2)

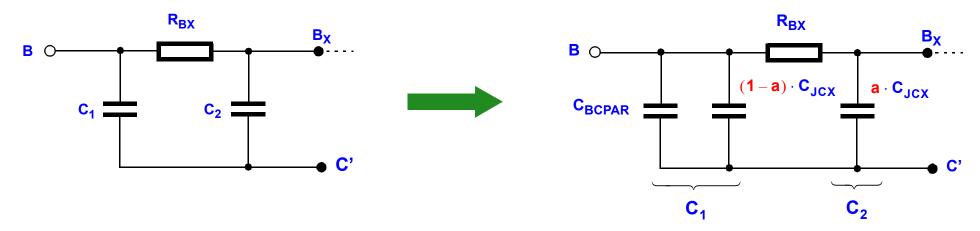
Parameter		R _{BCE} -	R _{BCE} - R _E [Ω]		odel [Ω]	f _{max} [GHz]	
i aiaii	r ai ailletei		28 mA	6 mA	28 mA	6 mA	28 mA
Split C _{JBE}	YES	36.57	23.24	34.08	20.76	346.7	4.807
Spirt C _{JBE}	NO	31.34	22.94	29.14	20.62	290.5	4.860
Deviation		14.30 %	1.27 %	14.50 %	0.674 %	16.21 %	1.10 %

Split C_{JBE} NO

AKB 2023 - dm096a.23 35/59

Effect of C_{JBE} Split (2/2)

- The BE depletion capacitance C_{JBE} can be divided on either side of the intrinsic base resistance
- Two cases are simulated
 - · No split of the BE depletion capacitance
 - All the capacitance is connected to the internal base node
 - Split of BE depletion capacitance along the intrinsic base resistance as a function of its area and peripheral component
- We are looking at the impact on
 - the FoM R_{BCE} R_E at 2 collector currents
 - Near the peak f_{max}
 6 mA
 - Far from the peak f_{max} 28 mA
 - and f_{max} at the 2 collector currents


Comments

- The split of C_{JBE} has a strong impact on the R_{BCE} R_E FoM, on the simulated base resistance R_{Btot} (which is a function of Q_{JEI}) and f_{max}
 - A good partitioning of the BE depletion capacitance (area and peripheral part) is needed to accurately fit both f_{max} and the base resistance
- Here again, It is interesting to note is that the impact of the split of C_{JBE} on R_{BCE} R_E is similar to the impact on the simulated base resistance R_{Btot}
 - This confirms once again that R_{BCE} R_E is strongly correlated with R_{Btot}

AKB 2023 - dm096a.23 36/59

Effect of F_{BCPAR} (1/4)

- As for the BE capacitance, the extrinsic BC depletion capacitance is distributed a long the base resistance
- For a compact model, a lumped representation is required.
- In HICUM/L2 two parasitics capacitances C_1 and C_2 are included in the equivalent circuit, respectively connected to the terminal base node B and to the external base node B_x .

The extrinsic BC depletion capacitance C_{JCX} is distributed in both sides of the extrinsic base resistance R_{BX} according to a partitioning factor **a**. In HICUM/L2 we have

$$\begin{cases}
C_1 = C_{BCPAR} + (1 - \mathbf{a}) \cdot C_{JCX} = (1 - F_{BCPAR}) \cdot (C_{BCPAR} + C_{JCX}) \\
C_2 = \mathbf{a} \cdot C_{JCX} = F_{BCPAR} \cdot (C_{BCPAR} + C_{JCX})
\end{cases}$$
 with $\mathbf{a} \in [0:1]$

AKB 2023 - dm096a.23 37/59

Effect of F_{BCPAR} (2/4)

(3)

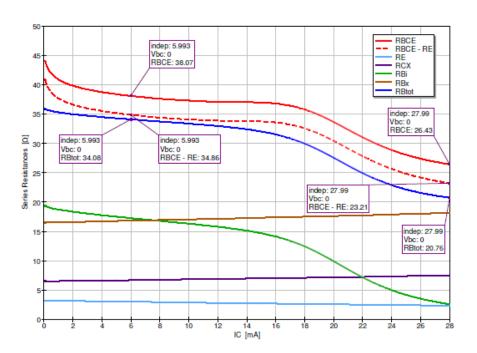
• From equation (2) F_{BCPAR} can be calculated from C_{BCPAR} and from C_{JCX0} knowing the partition factor **a**

$$\mathsf{F}_{\mathsf{BCPAR}} = \frac{\mathbf{a} \cdot \mathsf{C}_{\mathsf{JCX0}}}{\mathsf{C}_{\mathsf{BCPAR}} + \mathsf{C}_{\mathsf{JCX0}}}$$

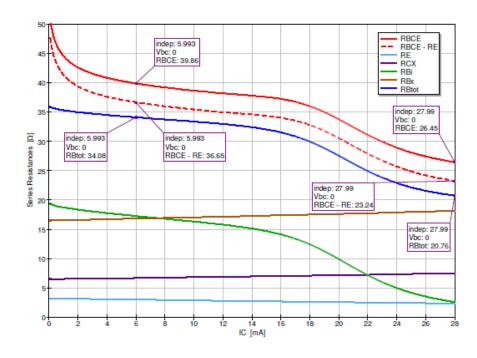
• In order to reduce arithmetic computation, F_{BCPAR} is calculated from the zero-bias extrinsic BC depletion capacitance C_{JCX0} rather than the voltage dependent value C_{JCX}

Warning

• Do not confuse the partitioning factor **a** which is used to split C_{JCX} along R_{BX} and the partitioning factor F_{BCPAR}, determined knowing **a**, which is used to calculate C₁ and C₂.



AKB 2023 - dm096a.23 38/59


Effect of F_{BCPAR} (3/4)

Parameter		R _{BCE} - R _E [Ω]		R_{Btot} model [Ω]		f _{max} [GHz]	
		6 mA	28 mA	6 mA	28 mA	6 mA	28 mA
	0.82	36.57	23.24	34.08	20.76	346.7	4.807
F _{BCPAR}	0 (C _{JCX} external)	34.86	23.21			557.6	4.825
	0.8598 (C _{JCX} internal)	36.65	23.24			341.2	4.806
Deviation between 0 and 0.8598		5.13 %	0.129 %			38.81 %	0.394 %

 $F_{BCPAR} = 0$

 $F_{BCPAR} = 0.8598$

AKB 2023 - dm096a.23

Effect of F_{BCPAR} (4/4)

We set F_{BCPAR} to 0 and 0.8598

- For $F_{BCPAR} = 0$ the extrinsic BC capacitance C_{JCX} is connected to the terminal base node
- For F_{BCPAR} = 0.8598 the extrinsic BC capacitance C_{JCX} is connected to the extrinsic base node (between the extrinsic and the intrinsic base resistance)

We are looking at the impact on

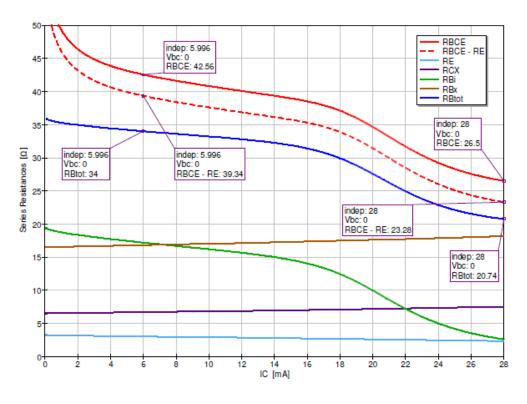
- the FoM R_{BCE} R_E at 2 collector currents
 - Near the peak f_{max} 6 mA
 - Far from the peak f_{max} 28 mA
- and f_{max} at the 2 collector currents

Comments

- At collector current close to the peak f_{max}, F_{BCPAR} has a significant impact on R_{BCE} R_E but above all a strong impact on f_{max}
 - Correct determination of F_{BCPAR} is very important for accurate adjustment of peak f_{max}
- At higher collector current the impact of F_{BCPAR} on both R_{BCE} R_E and f_{max} is negligible



AKB 2023 - dm096a.23 40/59


Effect of C_{JBC} split (1/2)

Parameter		R _{BCE} - R _E [Ω]		R _{Btot} model [Ω]		f _{max} [GHz]	
i aiaii	ictei	6 mA	28 mA	6 mA	28 mA	6 mA	28 mA
Split C _{JBC}	YES	36.65	23.24	34.08	20.76	341.2	4.806
opiit oʻjBC	NO	39.34	23.28	34.00	20.74	54.27	4.726
Deviation		7.34 %	0.172 %	0.235 %	0.096 %	530 %	1.66 %

Split C_{JBC} NO

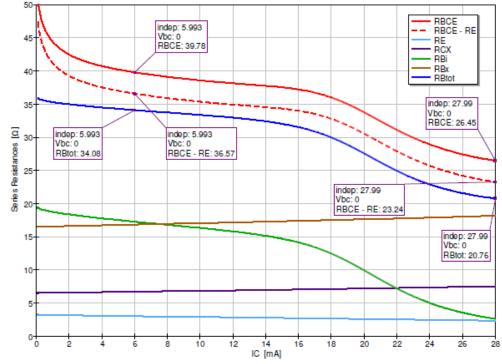
AKB 2023 - dm096a.23 41/59

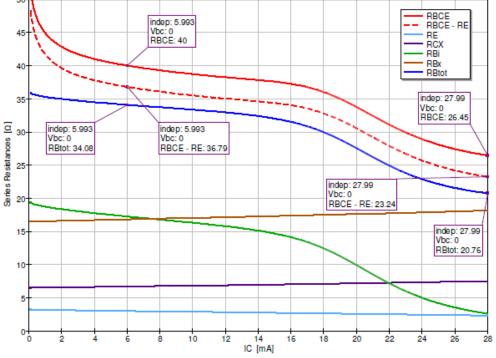
Effect of C_{BC} split (2/2)

- The BC depletion capacitance C_{JBC} can be divided on either side of the intrinsic base resistance
- Two cases are simulated
 - No split of the BC depletion capacitance
 - All the BC depletion capacitance is connected to the internal base node
 - Split of BC depletion capacitance along the intrinsic base resistance as a function of its area and peripheral component
- We are looking at the impact on
 - the FoM R_{BCE} R_E at 2 collector currents
 - Near the peak f_{max} 6 mA
 - Far from the peak f_{max} 28 mA
 - and f_{max} at the 2 collector currents

Comments

- At collector current close to the peak f_{max}, the split of C_{JBC} has a significant impact on R_{BCE} R_E but above all a strong impact on f_{max}
 - Correct partitioning of C_{JBC} is very important for accurate adjustment of peak f_{max}
 - At higher collector current the impact of the split of C_{JBC} on both R_{BCE} R_E and f_{max} is negligible


AKB 2023 - dm096a.23 42/59


Effect of substrate network (1/2)

Parameter		R _{BCE} - R _E [Ω]		R_{Btot} model [Ω]		f _{max} [GHz]	
		6 mA	28 mA	6 mA	28 mA	6 mA	28 mA
Substrate network	YES	36.57	23.24	34.08	20.76	346.7	4.807
	NO	36.79	23.24	34.00		347.7	4.815
Deviation		0.602 %	0 %			0.288 %	0.197 %

Substrate network YES

Substrate network NO

43/59 AKB 2023 - dm096a.23

Effect of substrate network (2/2)

- Simulation with and without substrate network
- We are looking at the impact on
 - the FoM R_{BCE} R_E at 2 collector currents
 - Near the peak f_{max} 6 mA
 - Far from the peak f_{max} 28 mA
 - and f_{max} at the 2 collector currents

Comments

ullet The substrate network has a negligible impact on both R_{BCE} - R_E and f_{max}

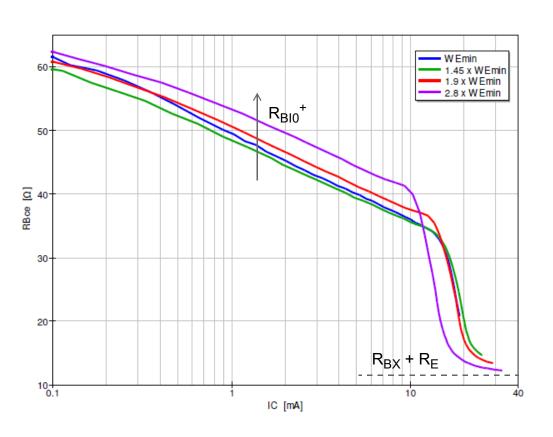
AKB 2023 - dm096a.23 44/59

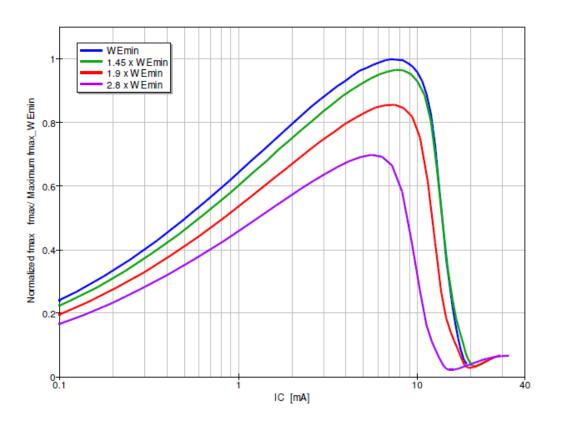
Evaluation of R_{BCE} from measurements (1/2)

- To validate a new extraction method from synthetic data is necessary, but it is not sufficient
- Test on measured data is then mandatory
- Direct determination of R_{BCE} from (1), without R_{CX} and R_E de-embedding
- Example of results from 2D HBTs with variable emitter width (W_E) and constant emitter length

W _E	W _{Emin}	1.45 x W _{Emin}	1.9 x W _{Emin}	2.8 x W _{Emin}
----------------	-------------------	--------------------------	-------------------------	-------------------------

Comments


- Results on the narrow transistor needs more investigations
 - Possible non-linear geometry scaling law?
 - R_{CX} and R_F de-embedding needed for more *reliable* results?
- \bullet The results for the other transistor widths are consistent with the physics and $f_{\mbox{\scriptsize max}}$ characteristics
 - At low currents R_{BCE} increases with the width of the emitter (R_{BI0} increasing)
 - At high currents the asymptotic values of R_{BCE} are similar (same R_{BX}, small R_{BI} high injection, emitter current-crowding)



AKB 2023 - dm096a.23 45/59

Evaluation of R_{BCE} from measurements (2/2)

 $Arr R_{BCE}$ and normalized f_{max} (with respect to the maximum value of f_{max} at W_{Emin}), versus I_C , at V_{BC} =0V

AKB 2023 - dm096a.23 46/59

Base resistance parameter optimization (1/3)

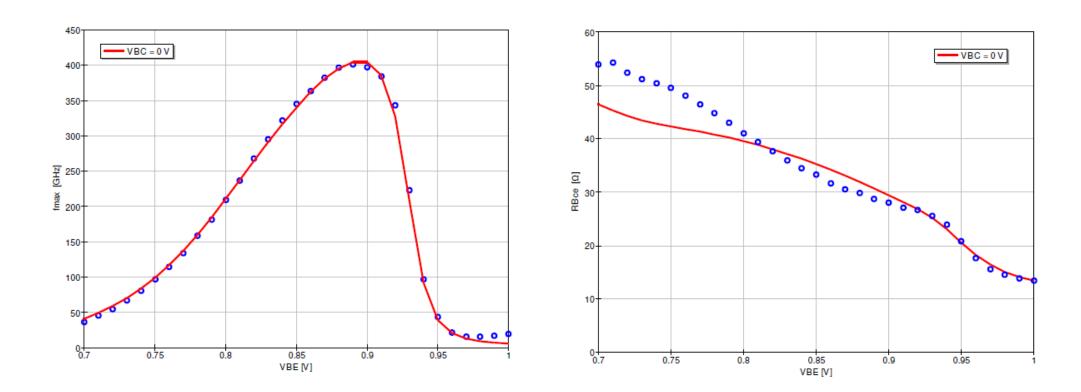
Prerequisite

- All HICUM/L2 model parameters have to be extracted excepted the parameter of the base resistance and the partitioning factor F_{BEPAR} and F_{BCPAR}
- Warning
 - The split of the depletion capacitances C_{JBE} and C_{JBC} along the base resistance must be accurately determined, otherwise an accurate optimization of f_{max} is not possible

Principle

• Extraction of the following parameters on both f_{max} and R_{BCE} characteristics at $V_{BC} = 0 \text{ V}$

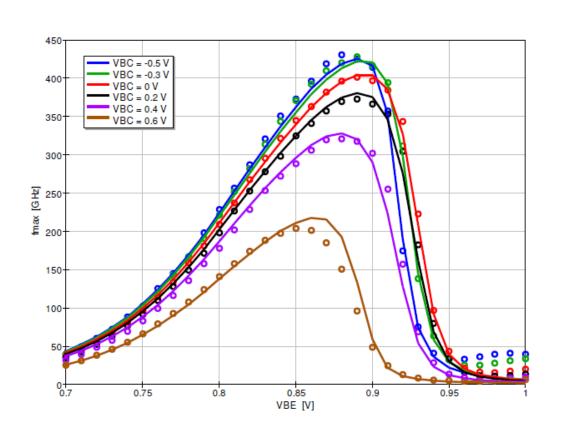
Parameter	Definition	Initial	Min	Max
R _{BI0}	Zero-bias intrinsic base resistance	10	0	8
R _{BX}	Extrinsic base resistance	10	0	∞
F _{DQR0}	Correction factor for modulation by BE and BC space charge layer	0	-0.5	100
F _{Ql}	Ratio of internal to total minority charge	1	0	1
F _{GEO}	Factor for geometry dependence of emitter current croding	0.66	0	1
F _{BEPAR}	Partioning factor of parasitic BE capacitance	0.5	0	1
F _{BCPAR}	Partioning factor of parasitic BC and extrinsic BC deletion capacitance	0.5	0	1

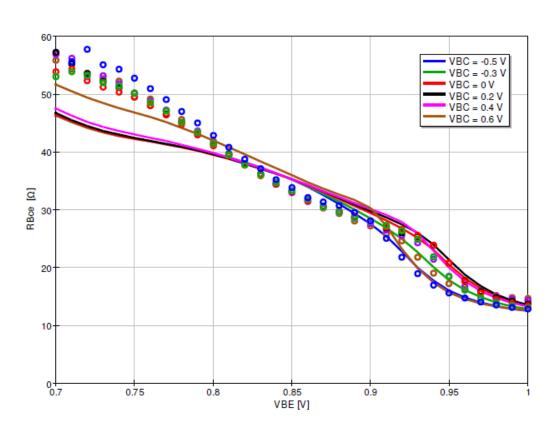

In this first test, F_{QI} and F_{GEO} are not optimized and are set to their default values

AKB 2023 - dm096a.23 47/59

Base resistance parameter optimization (2/3)

Result at V_{BC} = 0 V


To our knowledge, it is the first time that we can see a MHC on a parameter (R_{BCE}) which is close to the total base resistance + the emitter resistance, versus the bias (V_{BE} or I_{C} at constant V_{BC} or V_{CE})



AKB 2023 - dm096a.23 48/59

Base resistance parameter optimization (3/3)

Result for different V_{BC}

Promising first trial, on a single transistor, of joint optimization of R_{BCE} and f_{max}, for the determination of the base resistance parameters and partitioning factors of capacitances

AKB 2023 - dm096a.23 49/59

Summary and outlook (1/2)

- In this presentation, the R_{BEC} FoM (1), introduced in [2], has been studied in depth.
- From *synthetic* data, without any correction, this FoM allows to determine the dependence of the base resistance of bipolar transistor, in a wide range of current (before and after the f_{max} peak), with an accuracy around 20%.
- This accuracy can be improved knowing the emitter and collector series resistances, R_E and R_{CX}
- In this case the accuracy on the base resistance varies between 15 and 5%, depending on the operating point
- No other direct measurement method [1] provides this level of precision
- As for f_{max}, this FoM is very sensitive to the partition of the BE and BC depletion capacitance along the base resistance

AKB 2023 - dm096a.23 50/59

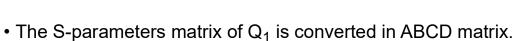
Summary and outlook (2/2)

- We suggest to add this FoM to f_{max} optimization to better separated the effect of the split of the depletion capacitances from the effect of the base resistance
 - Split of C_{JBE} and C_{JBC}, split of C_{BEPAR} and C_{BCPAR} optimized on f_{max} characteristics
 - Parameters of the base resistance optimized on R_{BCE}
- Despite these positive and interesting initial results, the story is not over
- Future works
 - · More tests and results are needed
 - Check the consistency of the results with transistors, coming from different technologies, with different structures and geometries
 - 1 and 2 base fingers
 - Interdigitated transistors
 - Sensitivity to the process splits
 - Add this FoM R_{BCE} to the f_{max} optimization and see if the f_{max} characteristics and the distribution of the BE and BC capacities along the base resistance can be better adjusted.
 - Not an easy task, which requires resources and time
 - All volunteers interested in continuing this evaluation are welcome...
 - If needed → didier.celi@st.com

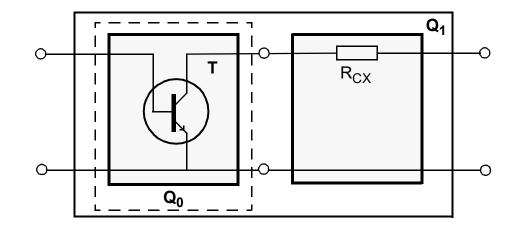
AKB 2023 - dm096a.23 51/59

Acknowledgments

- This entire study was carried out using QucsStudio [10]
 - Simulation
 - Plots
 - Parameter extraction
- This is not only a free and powerful circuit simulator but thanks to its interface with OCTAVE and to the routines developed by Zoltan Huszka, QucsStudio is a fantastic and unique tool for modeling purpose
 - Plot electrical characteristic or FoM of electronic devices
 - Model to Hardware Correlation (MHC)
 - Validation of new model features
 - Rapid study and development of extraction routines
 - Short learning curve thanks to a powerful GUI
 - No new programming language to learn
 - Can be used by beginners
 - Not open source but free
 - Developed for Windows but runs on Linux using Wine (not tested)

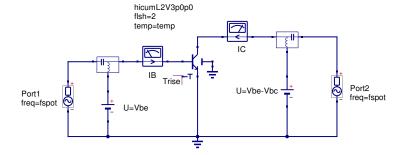

AKB 2023 - dm096a.23 52/59

Appendix A: R_{CX} de-embedding


- How to remove the series resistance R_{CX} from the transistor?
 - R_{CX} is assumed to be in cascade with the other parts of the transistor.
 - Removing R_{CX} from the quadrupole Q_1 is equivalent to multiply the chain matrix of the quadrupole by the inverse of the chain matrix of R_{CX}

$$[A_{Q_1}] = [A_{Q_0}] \cdot [A_{R_{CX}}] \Leftrightarrow [A_{Q_0}] = [A_{Q_1}] \cdot [A_{R_{CX}}]^{-1}$$
 (4)

•
$$[A_{R_{CX}}] = \begin{bmatrix} 1 & R_{CX} \\ 0 & 1 \end{bmatrix} \Rightarrow [A_{R_{CX}}]^{-1} = \begin{bmatrix} 1 & -R_{CX} \\ 0 & 1 \end{bmatrix}$$


- Then the ABCD matrix of Q₀ is computed from (4)
- In finally the ABCD matrix of Q₀ is converted in y-parameters matrix

AKB 2023 - dm096a.23 53/59

Appendix B: RE extraction - QucsStudio worksheet

s-parameter simulation

Type=list Points=1e9 output=dc

parameter parameter sweep sweep

SW2 Sim=SW1 Param=Vbe Param=Vbc Type=list Points=0

RE AC extraction

QucsStudio 3.3.2 # Revision 1.01 # 23/08/2023

equation track_card equation VBE_Range vbe lo=0.88 vbe_hi=0.93

equation equation Dummy Boltzmann temp=TAMBm[1] err_opt=0 Tk=temp-T0K

equation filtP R12 Regression in Regression out a1=xsel NFeff=x1 a2=1-Vbesel+Vbesel RE regr=x2 Export=yes a3=0 a=ysel w=1/a Export=yes Linear Regression equation 3varRegression b1=w*a1 b2=w*a2 b3=w*a3 b=w*a

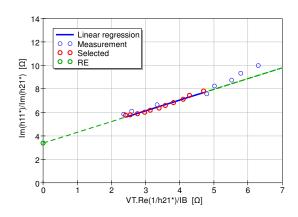
Export=yes

equation

Y Parameters_Meas fspot=1e9 y11m=rY11m+j*iY11m y12m=rY12m+j*iY12m y21m=rY21m+j*iY21m y22m=rY22m+j*iY22m

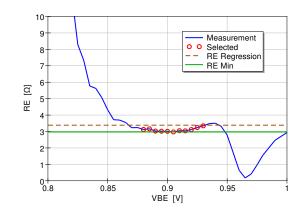
SW1

Sim=SP1


Type=list

equation

Data Selection Vbesel=range(Vbe,vbe lo,vbe hi) Usel=1-Vbesel+Vbesel xsel=range(xm,vbe lo,vbe hi) ysel=range(ym,vbe lo,vbe hi)

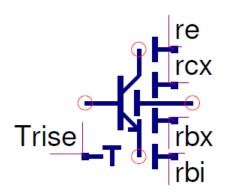

equation

RE_ZH U=1+IC.I-IC.I h11m=1/(y11m+y12m) h21m=(y21m-y12m)/(y11m+y12m)x=real(1/h21m)*VT/IBm y=imag(h11m)/imag(h21m) xm=U*real(1/h21m)*VT/IBm ym=U*imag(h11m)/imag(h21m) Rem=ym-xm Resel=ysel-xsel Re min=min(Resel)

VT=kB*Tk/qelectron

Rmin=1e-4

frequency NF_eff RE Min RE regression 0.9156 2.971


54/59 AKB 2023 - dm096a.23

Appendix C: Strobe transistor with QucsStudio [11], [10]

- What is a strobe transistor?
 - Allows to export internal variables of the VA code
 - \bullet Example for exporting RBI, RBX, RCX and RE
- How to create a strobe transistor using QucsStudio?
 - Additional nodes must be created

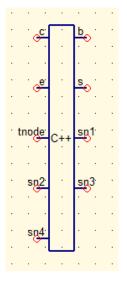
```
module hicumL2V3p0p0 (c,b,e,s,tnode,sn1,sn2,sn3,sn4);
```

- The module definition is extended by the terminal nodes sn1, sn2, sn3, sn4
 - The new terminal will appear on the transistor symbol
- The signal nodes are of voltage type as specified in the node definitions

AKB 2023 - dm096a.23 55/59

- Variable assignment to the new terminal nodes
 - Go to the end of the VA file and assign the output data at each signal node

```
V(sn1) <+ rbi;
V(sn2) <+ rbx_t;
V(sn3) <+ rcx_t;
V(sn4) <+ re_t;
end //analog
endmodule</pre>
```

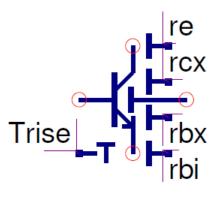

• Save the VA file and open it on the QucsStudio workspace. Compile the code using the run button

• The file hicumL2V3p0p0.VA.cpp is generated

```
1 /*
2 * hicumL2V3p0p0.va.cpp - device implementations for hicumL2V3p0p0 module
3 * dynamically linked library for QucsStudio
4 * created from VerilogAMS file by ADMS
5 */
```

- Use with default symbol
 - Drag hicumL2V3p0p0.VA.cpp to the schematic

AKB 2023 - dm096a.23 56/59


Use with transistor symbol

• It is also possible to associate a transistor symbol by adding it at the end of the .cpp file (not described here)

The device is ready to use in simulation

- The signals on the strobe nodes can be then used in equations or diagrams
 - They are referenced by rbi.V, rbx.V, rcx.V and re.V

rbx.V rcx.V	Vbe Vbc Vbe Vbc
re.V	Vbe Vbc
rbi.V	Vbe Vbc

AKB 2023 - dm096a.23 57/59

References

- [1] A. Pawlak, J. Krause, H. Wittkopf, M Schröter, "Single Transistor-Based Methods for Determining the Base Resistance in SiGe HBTs: Review and Evaluation Across Different Technologies", IEEE ToED, pp. 4591-4602, December 2016
- [2] Z. Huszka, E. Seebacher, W Pflanzl, "An Extended Two-Port Method for the Determination of the Base and Emitter Resistance", IEEE BCTM, pp. 188-196, 2005.
- [3] C. Raya, N. Kauffmann, F. Porchon, D. Céli, T. Zimmer, "Scalable Approach for External Collector Resistance Calculation", IEEE ICMTS, pp. 101-106, March 2022.
- [4] N. Kauffmann, C. Raya, F. Pourchon, S. Ortolland, D. Céli, "Determination of the Collector Resistance R_{CX} of Bipolar Transistor", 5th HICUM Workshop, 2005.
- [5] Z. Huszka and E. Seebacher, "Extraction of R_E and its temperature dependence from RF measurements", 21st AKB Workshop, October 2009.
- [6] Z. Huszka, "Extraction of R_B and R_E from RF measurements", Private communication, January 2011.
- [7] W. Sansen, R. Meyer, "Characterization and Measurement of the Base and Emitter Resistance of Bipolar Transistors", IEEE J. Solid-State Circuits, pp. 492-498, December 1972.
- [8] T. Nakadai, K. Hasimoto, "*Measuring the Base Resistance of Bipolar Transistors*", IEEE BCT?, pp. 200-203, 1991
- [9] W. Kloostermann, J. Paasschens, "Improved Extraction of Base and Emitter Resistance from Small Signal High Frequency Admittance Measurements", IEEE BCTM, pp. 93-96, September 1999.
- [10] QucsStudio, "A Free and Powerful Circuit Simulators", http://dd6um.darc.de/QucsStudio/about.html.
- [11] Z. Huszka, "OP Strobe", Private communication, June 2022.

AKB 2023 - dm096a.23 58/59

Our Technology starts with you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

