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HICUM Workshop Introduction
Introduction

•  Experimental results ...
• from DOTFIVE project (3 different process generations of 3 different technology partners)
• from characterizing other process types (production, high-voltage) 

=> observation of a variety of physical effects 

•  some effects were difficult to describe with physics-based model parameters with
existing v2.24

=> motivation for extension to v2.31 

•  heavy use of BTE, HD, DD device simulation for model development

=>  final verification always on experimental results 

=> this presentation: overview and details on v2.31 extensions 
 © MS 3



HICUM Workshop HICUM equivalent circuit
HICUM equivalent circuit
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HICUM Workshop Transfer current
Transfer current
... in HICUM is based on the GICCR

•  From 1D drift-diffusion-transport equation: 

•  Weight functions hj and hv are 1 in the 1D case, c0 is a bias independent constant.

•  Weight function hg reads , with "r" as reference region

•  Reference region in HICUM is the neutral base:  

k represents the various regions in the transistor
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HICUM Workshop Transfer current
Transfer current related charge
•  Actual charge in the transistor is divided into zero-bias, depletion and mobile charge

component:  

•  Transfer current expression from GICCR: 

    with weighted hole charge

    and weighted mobile charge (hf0 newly introduced in v2.3)

     ,   

=> Transfer current is directly related to charges defined from small- and 
large-signal behavior 
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HICUM Workshop Transfer current
GICCR allows taking into account material composition
    Si BJT                                                                        SiGe HBT
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HICUM Workshop Transfer current
Normalized transconductance
gm/(IC/VT) can be used to identify device non-ideality and to compare technologies 

•  experimental observation: drop in normalized transconductance already at low to
medium injection for some technologies.

•  cannot be described with simple (bias independent) reverse Early voltage models

•  From 1D device simulation: effect is directly related to Ge grading in BE-SCR

=> explicitly included in v2.30:  ,  
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HICUM Workshop Transfer current
Transconductance at medium injection
Stronger reduction of gm/(IC/VT) could not be described with meaningful Qp0 values 

•  Need to keep physics-based value for Qp0 for accurate modeling of internal base
(sheet) resistance  =>  extract Qp0 from tetrodes rather than from transfer current.

=> strongly improves gm modeling at medium bias
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HICUM Workshop Transfer current
Temperature dependence of new weight factors 
... due to bandgap differences 
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•  hjEi also incl. movement of SCR boundaries

,
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HICUM Workshop Transfer current
Results
•  Physics-based extensions in v2.30 and v2.31

• Material composition related effects modeled explicitly by physics-based equations
• Takes into account temperature effects due to different bandgap values 

=> Accurate transfer current modeling by GICCR with physics-based charges, weight 
factors, and parameters

=> New version has been successfully applied to several recent technologies 
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HICUM Workshop Mobile charges
Mobile charges
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HICUM Workshop BC barrier effect
BC barrier effect
•  In HICUM v2.30, the collector heterojunction barrier effect is modeled.

• Barrier effect becomes more pronounced in advanced SiGe HBT generations
• Formation of barrier in conduction band strongly related to Kirk-effect in well-designed HBT

=>  more rapid increase of transit time beyond ICK 
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• Close to BC-junction -> related to Kirk-effect
• Far in the collector -> at too high (i.e. irrelevant) currents
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HICUM Workshop BC barrier effect
Modeling the BC barrier effect 
•  Onset of barrier effect is still given by ICK (for a "well-designed" DHBT)

•  barrier voltage (from bias dependent conduction band barrier):
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HICUM Workshop BC barrier effect
New mobile charge formulation at high injection
•  Include barrier related base and collector charge terms explicitly:

   

=> very accurate and flexible, and still backwards compatible 
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HICUM Workshop Vertical NQS-effects
Vertical NQS-effects
HICUM includes mobile charge and transfer current related NQS effects

=>  Good agreement in small-signal and large-signal simulation 
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HICUM Workshop Lateral NQS-effect
Lateral NQS-effect
... caused by high-frequency emitter current crowding
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=> simple capacitance parallel to RBi:

•  Verilog-A only allows adjunct network with
charge definition:   or
 ?

• latter leads to strong overestimation of the
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• present solution ONLY valid for small-signal
operation and not too high frequencies
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=> still under investigation

•  Feedback from circuit design?
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HICUM Workshop Lateral NQS-effect
Problems with implementation of lateral NQS-effect
... caused by undesired derivatives

•  small-signal form of  in Verilog-A leads to

=>  undesired derivative from Verlog-A implementation constraints

•  Also: undesired derivatives result in large overhead of compiled code since 
dCRBi/dVRBi internally requires the calculation of the derivatives of all nonlinear
capacitances (incl. for CdEi and CdCi)

•  alternatives are presently under investigation

QRBi CRBiVRBi=

dQRBi
dt

---------------
d CRBiVRBi( )

dt
------------------------------- CRBi

dVRBi
dt

--------------
dCRBi
dVRBi
---------------VRBi

dVRBi
dt

--------------+= =

theoretical solution not present in small-
signal theory
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HICUM Workshop Noise modeling
Noise modeling
•  New noise correlation model in v2.31 is valid at all frequencies

• physically connected to NQS effects  =>  can use same delay time and assoc. parameters 

•  Additional flicker noise contribution for emitter resistance RE 
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HICUM Workshop Self-heating
Self-heating
intra-device thermal coupling (self-heating) described by single-pole network 

•  Temperature node also allows modeling of inter-device thermal coupling 
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•  dissipated power: P = f(IT, VCEi, IBE, IBC, RB, RE, RCX, IAVL)
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HICUM Workshop Summary on V2.31 extensions
Summary on V2.31 extensions
list of new model parameters and flags

Parameter Def. Description

δCK 2 Fitting factor for ICK

ahjEi 0 Parameter describing the slope of hjEi(VBE)

rhjEi 1 Smoothing parameter for hjEi(VBE) at high voltage.

ΔVgBE 0 Bandgap difference between base and BE-junction, used for hjEi0 and hf0.

ζhjEi 1 Temperature coefficient for ahjEi.

ζVgBE 1 Temperature coefficient for hjEi0.

hf0 1 Weight factor for the low current minority charge.

VcBar 0 Barrier voltage, =0 turns the model off.

acBar 0.01 Smoothing parameter for barrier voltage.

icBar 0 Normalization parameter, =0 turns the model off.

ζrth 0 Temperature coefficient for Rth

FLCONO 0 High-frequency noise correlation flag

KfrE 0 RE flicker noise coefficient

AfrE 2 RE flicker noise exponent factor

TYPE 1 Flag for npn (1) and pnp (-1) transistors
 © MS 21



HICUM Workshop Experimental results
Experimental results
Technologies shown here

•  ST B9MW     with fT/fmax = 200/300 GHz,  AE0 = 1x0.13x4.87 μm2

•  IHP SGB25V with fT/fmax = 75/95 GHz,      AE0 = 1x0.64x12.68 μm2

•  IHP 500GHz  with fT/fmax = 300/500 GHz,  AE0 = 8x0.12x0.96 μm2

=> Comparison over large bias, temperature, and geometry range 
 © MS 22



HICUM Workshop Experimental results
ST B9MW technology 
Forward gummel characteristics for [-40, 27, 75, 125]°C.

=>  very good agreement over wide bias and T range 
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HICUM Workshop Experimental results
ST technology (cont’d)
transit frequency for [-40, 27, 75, 125]°C.

=>  very good agreement over wide bias and T range 
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HICUM Workshop Experimental results
ST technology (cont’d)
Maximum oscillation frequency for [-40, 27, 75, 125]°C.

=>  good agreement over wide bias and T range
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HICUM Workshop Experimental results
ST technology (cont’d)
Normalized transconductance for [-40, 27, 75, 125]°C.

=>  very good agreement over wide bias and T range
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HICUM Workshop Experimental results
IHP SGB25V technology
Temperature dependence of forward Gummel characteristics

=>  very good agreement over wide bias and T range 
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HICUM Workshop Experimental results
IHP SGB25V technology (cont’d)
geometry scaling of transit frequency 

=>  good agreement over geometry and wide bias range 
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HICUM Workshop Experimental results
IHP 500GHz technology
Temperature dependence of forward Gummel characteristics and transit frequency

=>  very good agreement over wide bias and geometry range 
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HICUM Workshop Experimental results
IHP 500GHz technology (cont’d)
power gain                                                            stability factor 

=>  reasonable agreement over frequency and wide bias range 
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HICUM Workshop Experimental results
IHP 500GHz technology (cont’d)
Large-signal results for AE0 = 0.12 x 10μm2 (4 in parallel)

=>  very good agreement for dynamic characteristics 
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HICUM Workshop Summary and conclusions
Summary and conclusions
•  observation of various physical effects both in advanced technologies (during 

DOTFIVE project) and other technologies measured in our lab

•  HICUM/L2 v2.31 extensions
• BC barrier effect & improved description of material composition in transfer current and gm 
• BC barrier effect in mobile charge
• temperature dependence of new parameters and of thermal resistance
• HF noise correlation model valid up to very high frequencies
• miscellaneous: flicker noise addition in RE, optimized NQS effect VA implement., pnp flag 

•  access to variety of (production) technologies for modle verification is very important 
=> otherwise difficult to make a model widely applicable throughout industry

•  need better measurement capability for small- and large-signal model verification 

• Goal for InP HBTs: extend HICUM/L2 
• add specific physical effects (as determined to be relevant)
• enable geometry scaling  =>  circuit optimization and statistical modeling 
• generate scalable HICUM/L0 and distributed HICUM/L4 automatically from L2

=> offer unified and flexible HBT modeling strategy 
 © MS 32
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	Introduction
	• Experimental results ...
	• from DOTFIVE project (3 different process generations of 3 different technology partners)
	• from characterizing other process types (production, high-voltage)

	=> observation of a variety of physical effects
	• some effects were difficult to describe with physics-based model parameters with existing v2.24

	=> motivation for extension to v2.31
	• heavy use of BTE, HD, DD device simulation for model development

	=> final verification always on experimental results
	=> this presentation: overview and details on v2.31 extensions

	HICUM equivalent circuit
	Transfer current
	... in HICUM is based on the GICCR
	• From 1D drift-diffusion-transport equation:
	• Weight functions hj and hv are 1 in the 1D case, c0 is a bias independent constant.
	• Weight function hg reads , with "r" as reference region
	• Reference region in HICUM is the neutral base: k represents the various regions in the transistor


	Transfer current related charge
	• Actual charge in the transistor is divided into zero-bias, depletion and mobile charge component:
	• Transfer current expression from GICCR:
	with weighted hole charge
	and weighted mobile charge (hf0 newly introduced in v2.3)
	,
	=> Transfer current is directly related to charges defined from small- and large-signal behavior

	GICCR allows taking into account material composition
	Si BJT SiGe HBT
	Low-current weight factors
	Si
	SiGe
	hjEi
	0.2
	1.0
	hjCi
	2.7
	2.4

	High-current weight factors
	Si
	SiGe
	hfE
	0.7
	31.3
	hfC
	1.9
	84.5
	hf0
	0.98
	5
	hfB
	1.1
	1.6

	(base as reference region)


	Normalized transconductance
	gm/(IC/VT) can be used to identify device non-ideality and to compare technologies
	• experimental observation: drop in normalized transconductance already at low to medium injection for some technologies.
	• cannot be described with simple (bias independent) reverse Early voltage models
	• From 1D device simulation: effect is directly related to Ge grading in BE-SCR
	=> explicitly included in v2.30: ,


	Transconductance at medium injection
	Stronger reduction of gm/(IC/VT) could not be described with meaningful Qp0 values
	• Need to keep physics-based value for Qp0 for accurate modeling of internal base (sheet) resistance => extract Qp0 from tetrodes rather than from transfer current.
	• For graded Ge, weighted mobile charge is much larger than actual mobile charge (mostly concentrated in neutral base) => need to introduce hf0:


	=> strongly improves gm modeling at medium bias

	Temperature dependence of new weight factors
	... due to bandgap differences
	• hjEi also incl. movement of SCR boundaries
	,
	• Medium-current weight factor
	• High-current weight factor



	Results
	• Physics-based extensions in v2.30 and v2.31
	• Material composition related effects modeled explicitly by physics-based equations
	• Takes into account temperature effects due to different bandgap values

	=> Accurate transfer current modeling by GICCR with physics-based charges, weight factors, and parameters
	=> New version has been successfully applied to several recent technologies

	Mobile charges
	• forward active bias mobile charge in HICUM
	• corresponding transit time
	• follows:

	• ccritical current ICK
	• added parameter for better fitting to field dependence of mobility.
	• default dCK=2
	• parameter allows better fitter for, e.g., pnp


	BC barrier effect
	• In HICUM v2.30, the collector heterojunction barrier effect is modeled.
	• Barrier effect becomes more pronounced in advanced SiGe HBT generations
	• Formation of barrier in conduction band strongly related to Kirk-effect in well-designed HBT

	=> more rapid increase of transit time beyond ICK
	• Influence of heterojunction position on barrier effect
	• Close to BC-junction -> related to Kirk-effect
	• Far in the collector -> at too high (i.e. irrelevant) currents



	Modeling the BC barrier effect
	• Onset of barrier effect is still given by ICK (for a "well-designed" DHBT)
	• barrier voltage (from bias dependent conduction band barrier):
	with
	• New parameters: VcBar, IcBar, acBar


	New mobile charge formulation at high injection
	• Include barrier related base and collector charge terms explicitly:
	• Barrier related base charge term calculated by a bias dependent barrier voltage.
	with already existing

	• Kirk-effect related transit times are "delayed" by the formation of the barrier:

	=> very accurate and flexible, and still backwards compatible

	Vertical NQS-effects
	HICUM includes mobile charge and transfer current related NQS effects
	=> Good agreement in small-signal and large-signal simulation

	Lateral NQS-effect
	... caused by high-frequency emitter current crowding
	• theoretical solution only for small-signal case (and negligible DC current crowding) => simple capacitance parallel to RBi:
	• Verilog-A only allows adjunct network with charge definition: or ?
	• latter leads to strong overestimation of the charge, current and admittance
	• present solution ONLY valid for small-signal operation and not too high frequencies


	Do NOT use for large-signal operation!!
	=> still under investigation
	• Feedback from circuit design?

	Problems with implementation of lateral NQS-effect
	... caused by undesired derivatives
	• small-signal form of in Verilog-A leads to

	=> undesired derivative from Verlog-A implementation constraints
	• Also: undesired derivatives result in large overhead of compiled code since dCRBi/dVRBi internally requires the calculation of the derivatives of all nonlinear capacitances (incl. for CdEi and CdCi)
	• alternatives are presently under investigation


	Noise modeling
	• New noise correlation model in v2.31 is valid at all frequencies
	• physically connected to NQS effects => can use same delay time and assoc. parameters

	• Additional flicker noise contribution for emitter resistance RE

	Self-heating
	intra-device thermal coupling (self-heating) described by single-pole network
	• dissipated power: P = f(IT, VCEi, IBE, IBC, RB, RE, RCX, IAVL)
	• Based on observations of experimental data and solution of heat transport equation:
	• Temperature node also allows modeling of inter-device thermal coupling


	Summary on V2.31 extensions
	list of new model parameters and flags
	Parameter
	Def.
	Description
	dCK
	2
	Fitting factor for ICK
	ahjEi
	0
	Parameter describing the slope of hjEi(VBE)
	rhjEi
	1
	Smoothing parameter for hjEi(VBE) at high voltage.
	DVgBE
	0
	Bandgap difference between base and BE-junction, used for hjEi0 and hf0.
	zhjEi
	1
	Temperature coefficient for ahjEi.
	zVgBE
	1
	Temperature coefficient for hjEi0.
	hf0
	1
	Weight factor for the low current minority charge.
	VcBar
	0
	Barrier voltage, =0 turns the model off.
	acBar
	0.01
	Smoothing parameter for barrier voltage.
	icBar
	0
	Normalization parameter, =0 turns the model off.
	zrth
	0
	Temperature coefficient for Rth
	FLCONO
	0
	High-frequency noise correlation flag
	KfrE
	0
	RE flicker noise coefficient
	AfrE
	2
	RE flicker noise exponent factor
	TYPE
	1
	Flag for npn (1) and pnp (-1) transistors


	Experimental results
	Technologies shown here
	• ST B9MW with fT/fmax = 200/300 GHz, AE0 = 1x0.13x4.87 mm2
	• IHP SGB25V with fT/fmax = 75/95 GHz, AE0 = 1x0.64x12.68 mm2
	• IHP 500GHz with fT/fmax = 300/500 GHz, AE0 = 8x0.12x0.96 mm2

	=> Comparison over large bias, temperature, and geometry range

	ST B9MW technology
	Forward gummel characteristics for [-40, 27, 75, 125]°C.
	=> very good agreement over wide bias and T range

	ST technology (cont’d)
	transit frequency for [-40, 27, 75, 125]°C.
	=> very good agreement over wide bias and T range

	ST technology (cont’d)
	Maximum oscillation frequency for [-40, 27, 75, 125]°C.
	=> good agreement over wide bias and T range

	ST technology (cont’d)
	Normalized transconductance for [-40, 27, 75, 125]°C.
	=> very good agreement over wide bias and T range

	IHP SGB25V technology
	Temperature dependence of forward Gummel characteristics
	=> very good agreement over wide bias and T range

	IHP SGB25V technology (cont’d)
	geometry scaling of transit frequency
	=> good agreement over geometry and wide bias range

	IHP 500GHz technology
	Temperature dependence of forward Gummel characteristics and transit frequency
	=> very good agreement over wide bias and geometry range

	IHP 500GHz technology (cont’d)
	power gain stability factor
	=> reasonable agreement over frequency and wide bias range

	IHP 500GHz technology (cont’d)
	Large-signal results for AE0 = 0.12 x 10mm2 (4 in parallel)
	=> very good agreement for dynamic characteristics

	Summary and conclusions
	• observation of various physical effects both in advanced technologies (during DOTFIVE project) and other technologies measured in our lab
	• HICUM/L2 v2.31 extensions
	• BC barrier effect & improved description of material composition in transfer current and gm
	• BC barrier effect in mobile charge
	• temperature dependence of new parameters and of thermal resistance
	• HF noise correlation model valid up to very high frequencies
	• miscellaneous: flicker noise addition in RE, optimized NQS effect VA implement., pnp flag

	• access to variety of (production) technologies for modle verification is very important => otherwise difficult to make a model widely applicable throughout industry
	• need better measurement capability for small- and large-signal model verification
	• Goal for InP HBTs: extend HICUM/L2
	• add specific physical effects (as determined to be relevant)
	• enable geometry scaling => circuit optimization and statistical modeling
	• generate scalable HICUM/L0 and distributed HICUM/L4 automatically from L2

	=> offer unified and flexible HBT modeling strategy
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