Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

A. Pawlak, M. Schroter, A. Mukherjee, J. Krause

Chair for Electron Devices and Integrated Circuits (CEDIC)

Technische Universität Dresden, Germany

pawlak@iee.et.tu-dresden.de, mschroter@ieee.com http://www.iee.et.tu-dresden.de/iee/eb/eb_homee.html

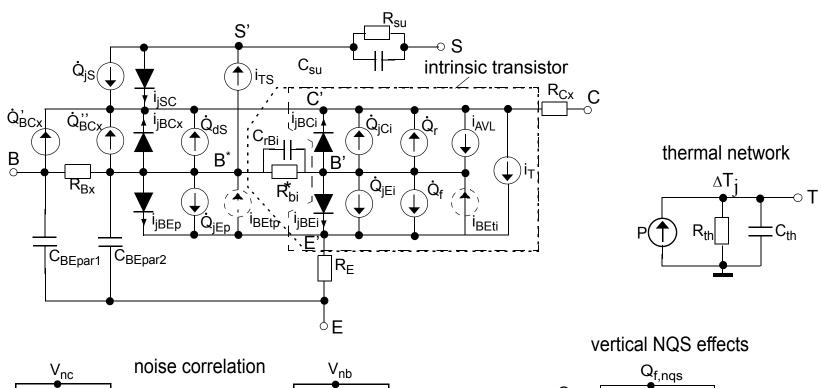
12th HICUM Workshop, Newport Beach, CA (USA), 2012

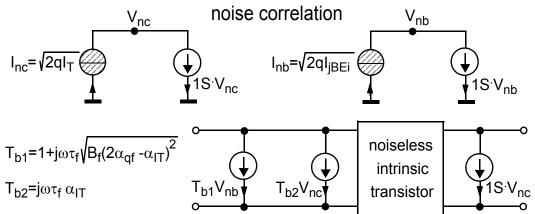
Outline

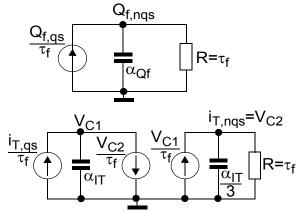
- Introduction
- HICUM equivalent circuit
- Transfer current
- Mobile charges
- Vertical NQS-effects
- Lateral NQS-effect
- Noise modeling
- Self-heating
- Experimental results

HICUM Workshop Introduction

Introduction


- Experimental results ...
 - from DOTFIVE project (3 different process generations of 3 different technology partners)
 - from characterizing other process types (production, high-voltage)
 - => observation of a variety of physical effects
- some effects were difficult to describe with physics-based model parameters with existing v2.24
 - => motivation for extension to v2.31
- heavy use of BTE, HD, DD device simulation for model development
 => final verification always on experimental results
 - => this presentation: overview and details on **v2.31** extensions


 \mathbb{O} MS


HICUM Workshop

HICUM equivalent circuit

HICUM equivalent circuit

HICUM Workshop

Transfer current

Transfer current

... in HICUM is based on the GICCR

• From 1D drift-diffusion-transport equation: $I_T = c_0 \frac{\exp\left(\frac{V_{BEi}}{V_T}\right) - \exp\left(\frac{V_{BCi}}{V_T}\right)}{\int_0^{l_W} h_j h_v h_g p dx}$

- Weight functions h_i and h_v are 1 in the 1D case, c_0 is a bias independent constant.
- Weight function h_g reads $h_g(x) = \frac{\mu_{nr} n_{ir}^2}{\mu_n(x) n_i^2(x)}$, with "r" as reference region

• Reference region in HICUM is the neutral base: $h_k = \frac{\int_k \frac{\mu_n(x_B) n_i^2(x_B)}{\mu_n(x) n_i^2(x)} p(x) dx}{\int_k p(x) dx}$

k represents the various regions in the transistor

HICUM Workshop

Transfer current

Transfer current related charge

• Actual charge in the transistor is divided into zero-bias, depletion and mobile charge component: $Q_p = qA_E \int p(x)dx = Q_{p0} + \Delta Q_i + \Delta Q_m$

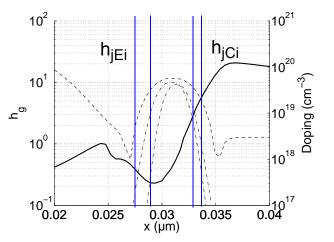
Transfer current expression from GICCR:

$$I_{T} = \frac{c_{10}}{Q_{pT}} \left[\exp\left(\frac{V_{BEi}}{V_{T}}\right) - \exp\left(\frac{V_{BCi}}{V_{T}}\right) \right] = i_{Tf} - i_{Tr}$$

with weighted hole charge

$$Q_{pT} = Q_{p0} + h_{jEi}Q_{jEi} + h_{jCi}Q_{jCi} + Q_{fT} + Q_{rT}$$

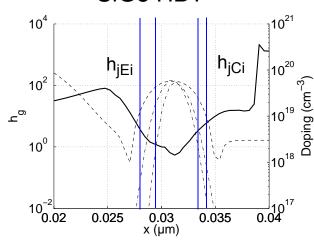
$$\Delta Q_{j}$$


and weighted mobile charge (h_{f0} newly introduced in v2.3)

$$Q_{fT} = h_{f0} \tau_{f0} i_{Tf} + h_{fE} \Delta Q_{Ef} + \Delta Q_{Bf} + h_{fC} \Delta Q_{Cf} \quad , \quad Q_{rT} = \tau_r i_{Tr}$$

=> Transfer current is directly related to charges defined from small- and large-signal behavior

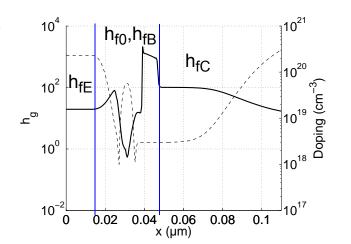
GICCR allows taking into account material composition


Si BJT

Low-current weight factors

	Si	SiGe
h _{jEi}	0.2	1.0
h _{jCi}	2.7	2.4

SiGe HBT



10² h_{f0},h_{fB} 10²⁰ 10²⁰ 10¹⁹ buildod 10¹⁸ 0 0.02 0.04 0.06 0.08 0.1 x (µm)

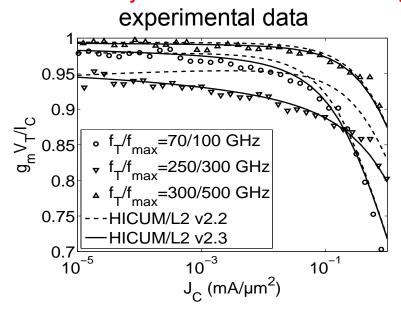
High-current weight factors

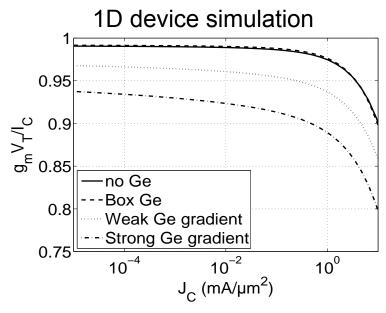
-		
	Si	SiGe
h _{fE}	0.7	31.3
h _{fC}	1.9	84.5
h _{f0}	0.98	5
h _{fB}	1.1	1.6

(base as reference region)

© MS

7


HICUM Workshop


Transfer current

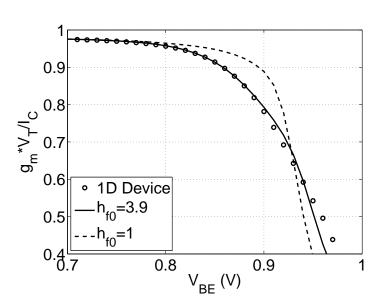
Normalized transconductance

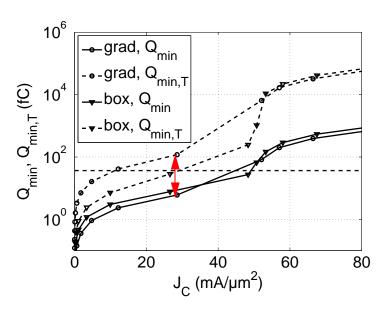
 $g_m/(I_C/V_T)$ can be used to identify device non-ideality and to compare technologies

 experimental observation: drop in normalized transconductance already at low to medium injection for some technologies.

- cannot be described with simple (bias independent) reverse Early voltage models
- From 1D device simulation: effect is directly related to Ge grading in BE-SCR

=> explicitly included in v2.30:
$$h_{jEi} = h_{jEi0} \frac{\exp(u) - 1}{u}$$
, $u = (a_{hjEi})(1 - (V_{BEi}/V_{DEi})^{z_{Ei}})$


HICUM Workshop Transfer current


Transconductance at medium injection

Stronger reduction of $g_m/(I_C/V_T)$ could not be described with meaningful Q_{p0} values

- Need to keep physics-based value for Q_{p0} for accurate modeling of internal base (sheet) resistance => extract Q_{p0} from tetrodes rather than from transfer current.
 - For graded Ge, weighted mobile charge is much larger than actual mobile charge (mostly concentrated in neutral base) => need to introduce h_{f0} :

$$Q_{fT} = h_{f0}\tau_{f0}i_{Tf} + h_{fE}\Delta Q_{Ef} + \Delta Q_{Bf} + h_{fC}\Delta Q_{Cf}$$

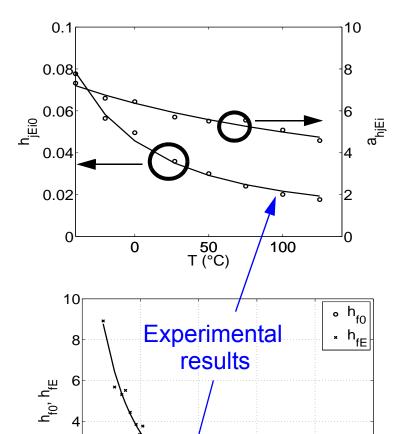
=> strongly improves g_m modeling at medium bias

Temperature dependence of new weight factors

... due to bandgap differences

• h_{jEi} also incl. movement of SCR boundaries

$$h_{jEi0}(T) = h_{jEi0}(T_0) \exp\left(\frac{\Delta V_{gBE}}{V_T} \left(\left(\frac{T}{T_0}\right)^{\zeta_{vgBE}} - 1\right)\right),$$


$$a_{hjEi}(T) = a_{hjEi}(T_0) \left(\frac{T}{T_0}\right)^{\zeta_{hjEi}}$$

Medium-current weight factor

$$h_{f0}(T) = h_{f0}(T_0) \exp\left(\frac{\Delta V_{gBE}}{V_T} \left(\frac{T}{T_0} - 1\right)\right)$$

· High-current weight factor

$$h_{f(E, C)}(T) = h_{f(E, C)}(T_0) \exp\left(\frac{V_{gB} - V_{g(E, C)}}{V_T}\left(\frac{T}{T_0} - 1\right)\right)$$

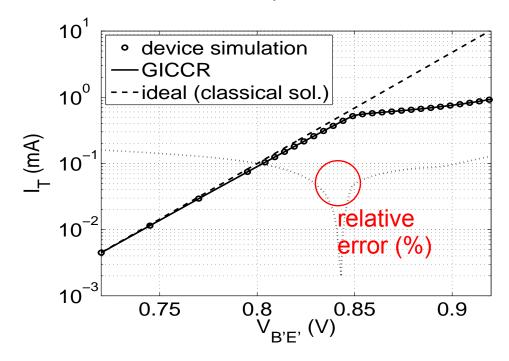
_50

0

50

T (°C)

100


150

200

HICUM Workshop Transfer current

Results

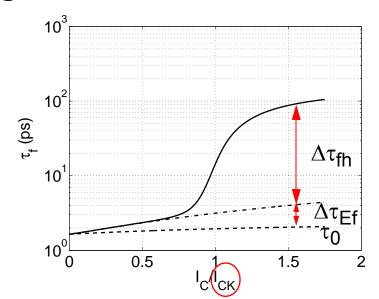
- Physics-based extensions in v2.30 and v2.31
 - Material composition related effects modeled explicitly by physics-based equations
 - Takes into account temperature effects due to different bandgap values
- => Accurate transfer current modeling by GICCR with physics-based charges, weight factors, and parameters

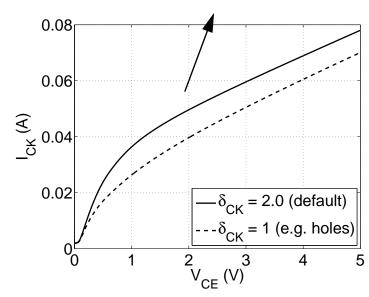
=> New version has been successfully applied to several recent technologies

Mobile charges

forward active bias mobile charge in HICUM

$$Q_f = \tau_{f0} + \Delta Q_{Ef} + \Delta Q_{fh}$$

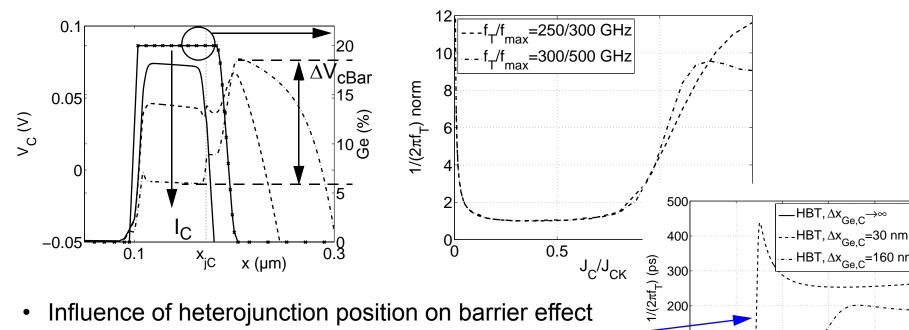

· corresponding transit time


$$\tau_f = \tau_{f0} + \Delta \tau_{Ef} + \Delta \tau_{fh}$$

- follows: $Q_f = \int_0^{i_{Tf}} \tau_f di_T$
- ccritical current I_{CK}
 - added parameter for better fitting to field dependence of mobility.

$$I_{CK} = \frac{v_{ceff}/r_{Ci0}}{\left(1 + \left(\frac{v_{ceff}}{V_{lim}}\right)^{\delta_{CK}}\right)^{1/\delta_{CK}}} \left[1 + \frac{x + \sqrt{x^2 + a_{ickpt}}}{2}\right]$$

- default δ_{CK} =2
- parameter allows better fitter for, e.g., pnp



HICUM Workshop

BC barrier effect

BC barrier effect

- In HICUM v2.30, the collector heterojunction barrier effect is modeled.
 - Barrier effect becomes more pronounced in advanced SiGe HBT generations
 - Formation of barrier in conduction band strongly related to Kirk-effect in well-designed HBT
 - => more rapid increase of transit time beyond I_{CK}

Close to BC-junction -> related to Kirk-effect

• Far in the collector -> at too high (i.e. irrelevant) currents

13

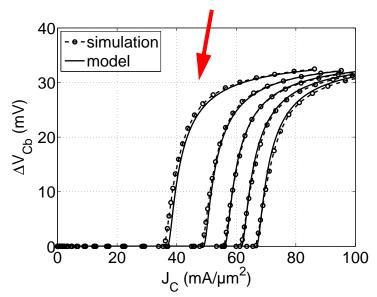
 $J_{C} (mA/\mu m^{2})$

6

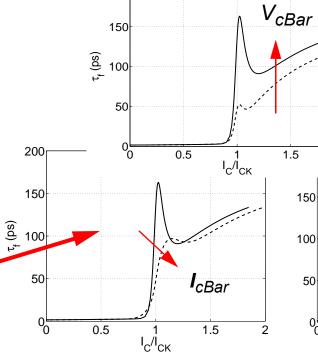
10

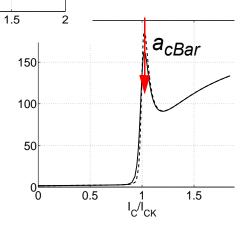
100

2


HICUM Workshop

BC barrier effect


Modeling the BC barrier effect


- Onset of barrier effect is still given by I_{CK} (for a "well-designed" DHBT)
- barrier voltage (from bias dependent conduction band barrier):

$$\Delta V_{cB} = V_{cBar} \exp \left(-\frac{2}{i_{bar} + \sqrt{i_{bar}^2 + a_{cBar}}} \right) \text{ with } i_{bar} = \frac{i_{Tf} - I_{CK}}{I_{cBar}}$$

New parameters: V_{cBar} , I_{cBar} , a_{cBar}

HICUM Workshop

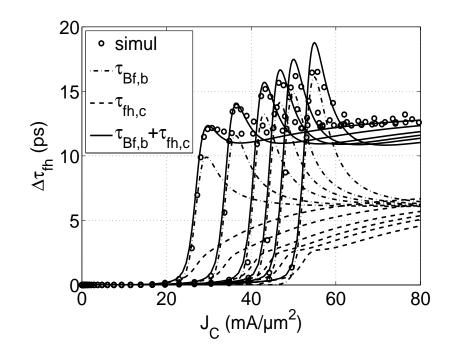
BC barrier effect

New mobile charge formulation at high injection

Include barrier related base and collector charge terms explicitly:

$$Q_{f,h} = \Delta Q_{Ef} + \Delta Q_{Bf,b} + \Delta Q_{Bf,c} + \Delta Q_{Cf,c}$$

$$Q_{fh,c}$$


 Barrier related base charge term calculated by a bias dependent barrier voltage.

$$\Delta Q_{Bf, b} = \tau_{Bfvs} i_{Tf} \left[\exp\left(\frac{\Delta V_C}{V_T}\right) - 1 \right]$$

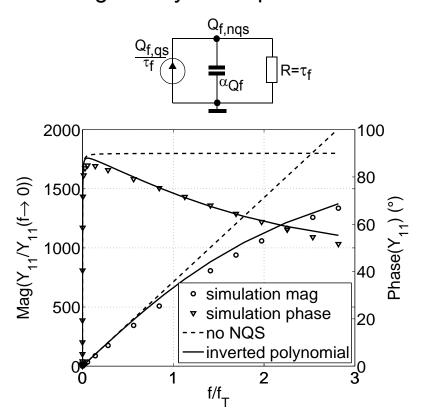
with already existing $\tau_{Bfvs} = (1 - f_{\tau hc})\tau_{hCs}$

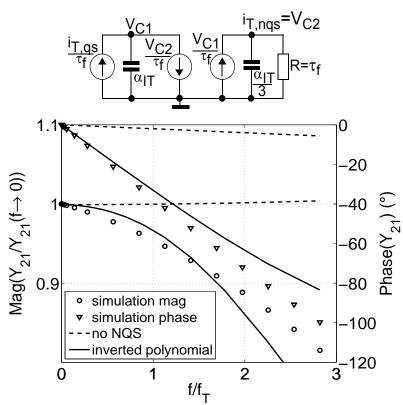
 Kirk-effect related transit times are "delayed" by the formation of the barrier:

$$\Delta Q_{fh, c} = \tau_{hCs} i_{Tf} w^2 \exp\left(\frac{\Delta V_C - V_{Cbar}}{V_T}\right)$$

=> very accurate and flexible, and still backwards compatible

HICUM Workshop


Vertical NQS-effects


Vertical NQS-effects

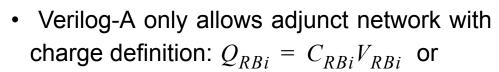
HICUM includes mobile charge and transfer current related NQS effects => modeled using polynomial approximation and separate networks

charge delay and input admittance

transfer current delay and transconductance:

=> Good agreement in small-signal and large-signal simulation

HICUM Workshop

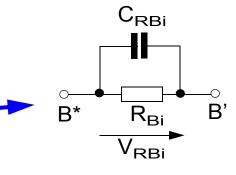

Lateral NQS-effect

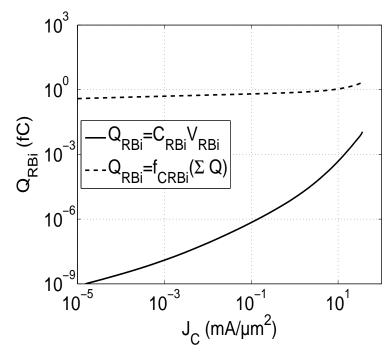
Lateral NQS-effect

... caused by high-frequency emitter current crowding

theoretical solution only for small-signal case (and negligible DC current crowding)
 => simple capacitance parallel to R_{Bi}:

$$C_{RBi} = f_{CRBi}(C_{jEi} + C_{jCi} + C_{dEi} + C_{dCi})$$


$$Q_{RBi} = f_{CRBi}(Q_{jEi} + Q_{jCi} + Q_{dEi} + Q_{dCi})?$$


- latter leads to strong overestimation of the charge, current and admittance
- present solution ONLY valid for small-signal operation and not too high frequencies

Do NOT use for large-signal operation!!

=> still under investigation

Feedback from circuit design?

HICUM Workshop

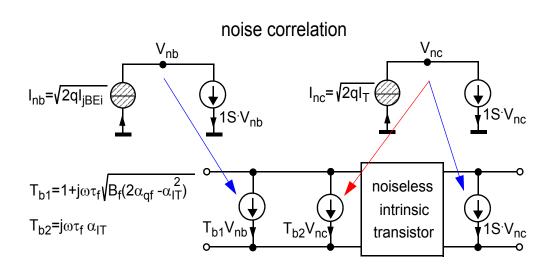
Lateral NQS-effect

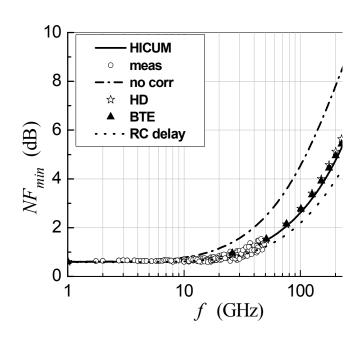
Problems with implementation of lateral NQS-effect

... caused by undesired derivatives

• small-signal form of $Q_{RBi} = C_{RBi}V_{RBi}$ in Verilog-A leads to

$$\frac{dQ_{RBi}}{dt} = \frac{d(C_{RBi}V_{RBi})}{dt} = C_{RBi}\frac{dV_{RBi}}{dt} + \frac{dC_{RBi}}{dV_{RBi}}V_{RBi}\frac{dV_{RBi}}{dt}$$
 theoretical solution not present in small-signal theory


- => undesired derivative from Verlog-A implementation constraints
- Also: undesired derivatives result in large overhead of compiled code since dC_{RBi}/dV_{RBi} internally requires the calculation of the derivatives of *all nonlinear* capacitances (incl. for C_{dEi} and C_{dCi})
- alternatives are presently under investigation


HICUM Workshop

Noise modeling

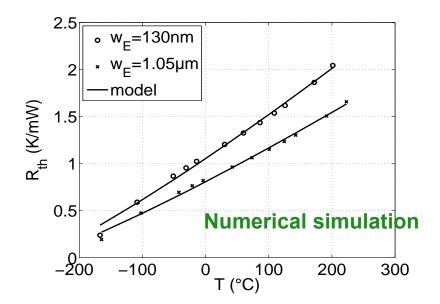
Noise modeling

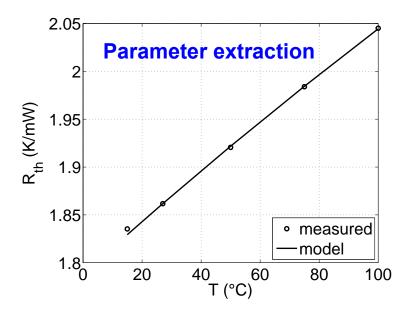
- New noise correlation model in v2.31 is valid at all frequencies
 - physically connected to NQS effects => can use same delay time and assoc. parameters

Additional flicker noise contribution for emitter resistance R_E

$$\overline{I_{rE}^2} = \frac{K_{fre}I_E^{A_{fre}}}{f} + \frac{4kT}{R_E}$$

HICUM Workshop Self-heating


Self-heating


intra-device thermal coupling (self-heating) described by single-pole network

- dissipated power: $P = f(I_T, V_{CEi}, I_{BE}, I_{BC}, R_{B,} R_E, R_{CX}, I_{AVL})$
- Based on observations of experimental data and solution of heat transport equation:

$$\begin{array}{c|c}
 & \Delta T_{j} \\
 & C_{th}
\end{array}$$

$$R_{th}(T) = R_{th}(T_0) \left(\frac{T}{T_0}\right)^{\zeta_{Rth}}$$

Temperature node also allows modeling of inter-device thermal coupling

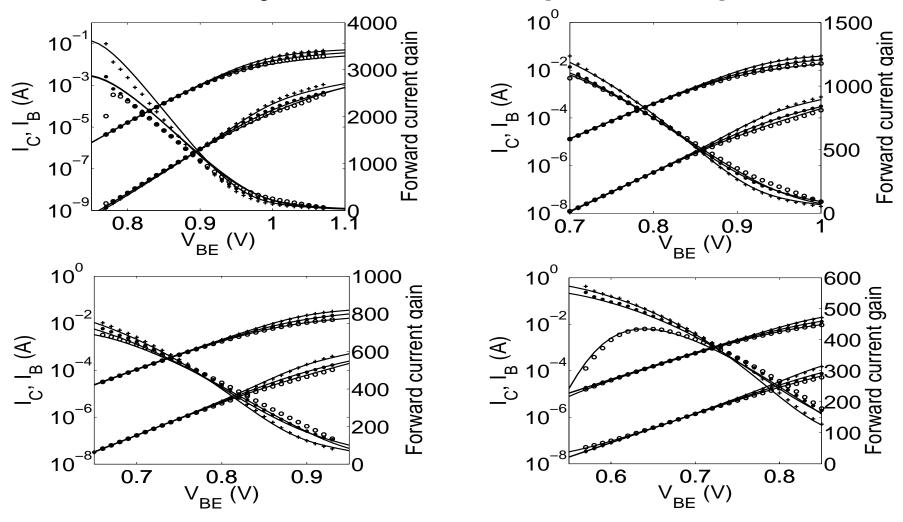
HICUM Workshop Summary on V2.31 extensions

Summary on V2.31 extensions

list of new model parameters and flags

Parameter	Def.	Description
δск	2	Fitting factor for I _{CK}
a _{hjEi}	0	Parameter describing the slope of $h_{jEi}(V_{BE})$
r _{hjEi}	1	Smoothing parameter for $h_{jEi}(V_{BE})$ at high voltage.
ΔV_{gBE}	0	Bandgap difference between base and BE-junction, used for h_{jEi0} and h_{f0} .
ShjEi	1	Temperature coefficient for a_{hjEi} .
ζVgBE	1	Temperature coefficient for h_{jEi0} .
h _{f0}	1	Weight factor for the low current minority charge.
V _{cBar}	0	Barrier voltage, =0 turns the model off.
a _{cBar}	0.01	Smoothing parameter for barrier voltage.
i _{cBar}	0	Normalization parameter, =0 turns the model off.
Srth	0	Temperature coefficient for R _{th}
FLCONO	0	High-frequency noise correlation flag
Kf _{rE}	0	R _E flicker noise coefficient
Af _{rE}	2	R _E flicker noise exponent factor
TYPE	1	Flag for npn (1) and pnp (-1) transistors

Experimental results


Technologies shown here

- ST B9MW with $f_T/f_{max} = 200/300$ GHz, $A_{E0} = 1x0.13x4.87 \mu m^2$
- IHP SGB25V with f_T/f_{max} = 75/95 GHz, A_{E0} = 1x0.64x12.68 μ m²
- IHP 500GHz with f_T/f_{max} = 300/500 GHz, A_{E0} = 8x0.12x0.96 μm^2

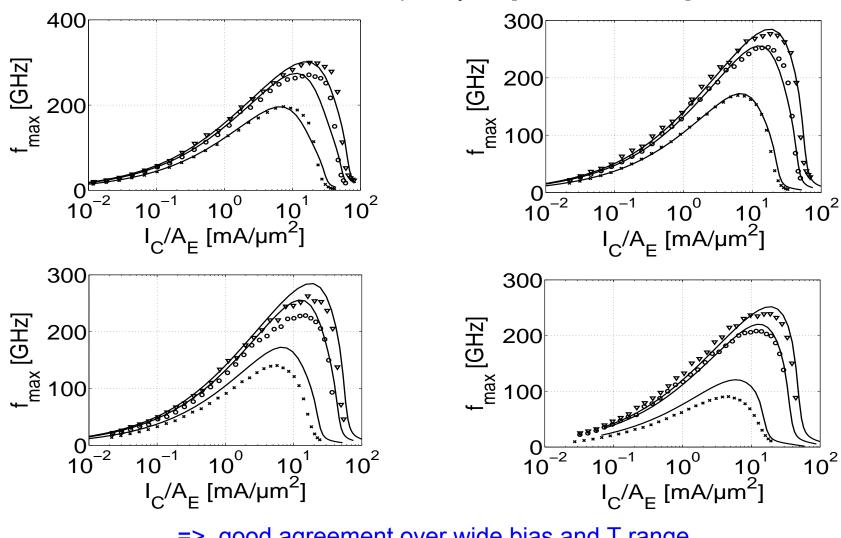
=> Comparison over large bias, temperature, and geometry range

ST B9MW technology

Forward gummel characteristics for [-40, 27, 75, 125]°C.

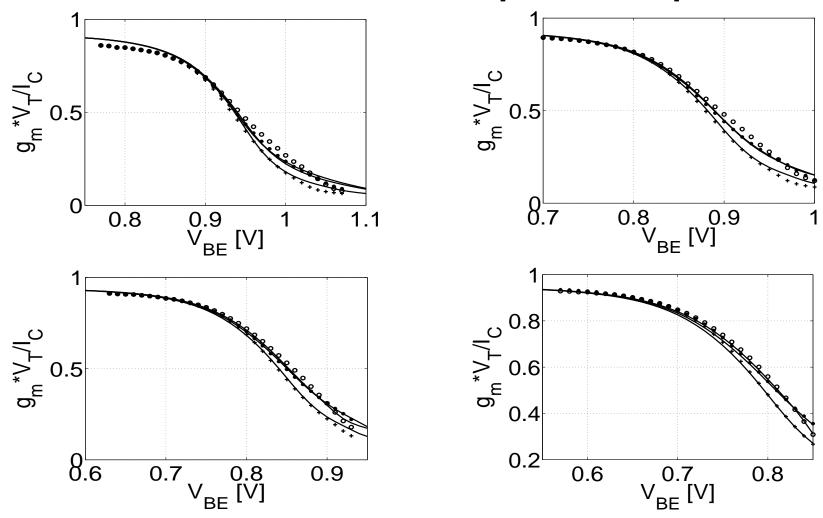
=> very good agreement over wide bias and T range

ST technology (cont'd)


transit frequency for [-40, 27, 75, 125]°C.

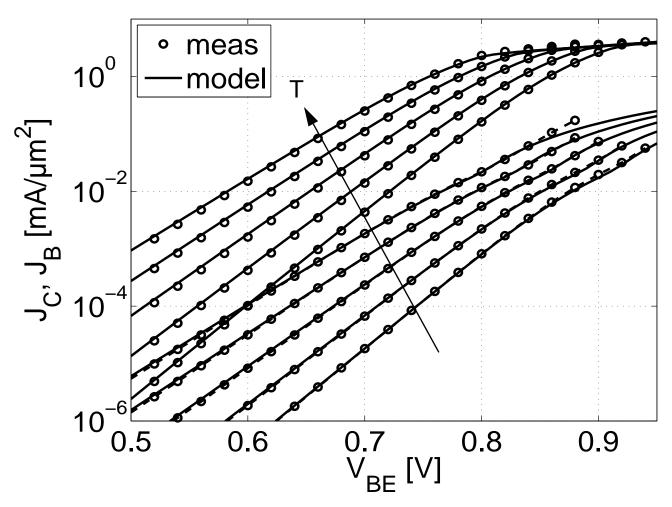
=> very good agreement over wide bias and T range

ST technology (cont'd)


Maximum oscillation frequency for [-40, 27, 75, 125]°C.

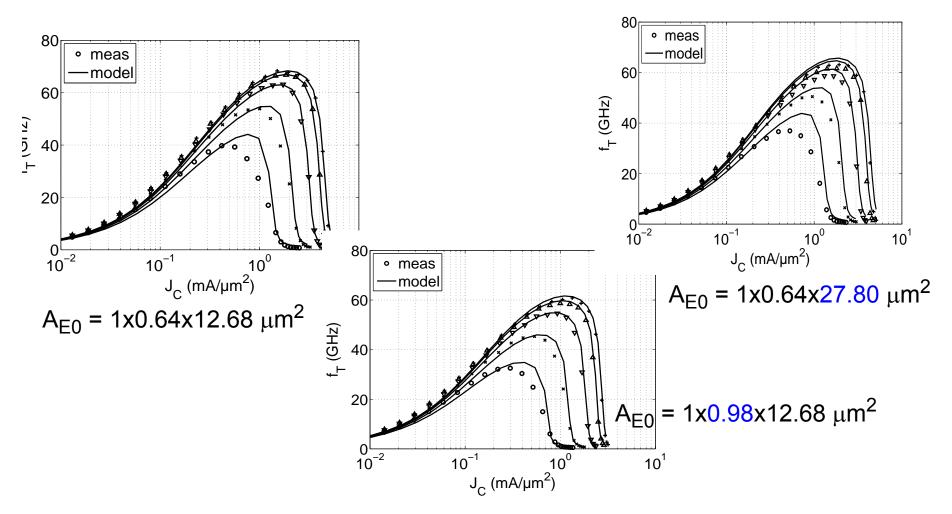
=> good agreement over wide bias and T range

ST technology (cont'd)


Normalized transconductance for [-40, 27, 75, 125]°C.

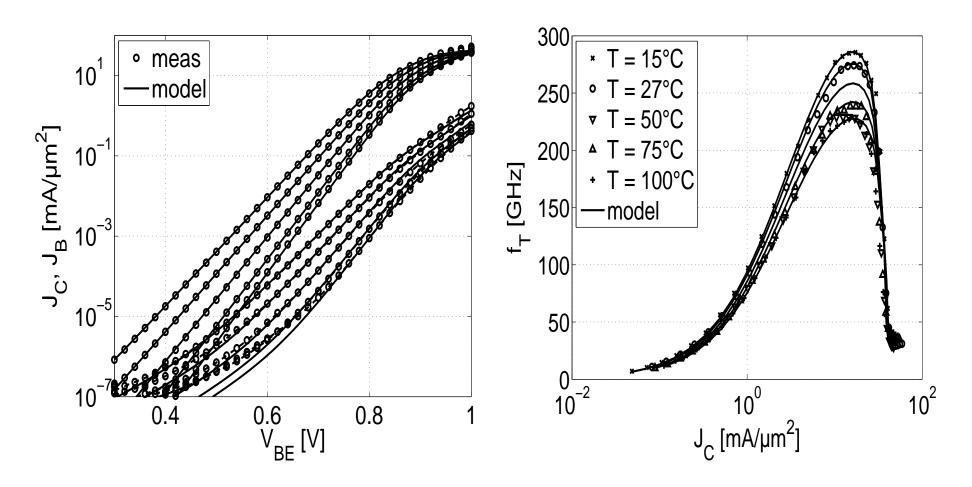
=> very good agreement over wide bias and T range

IHP SGB25V technology

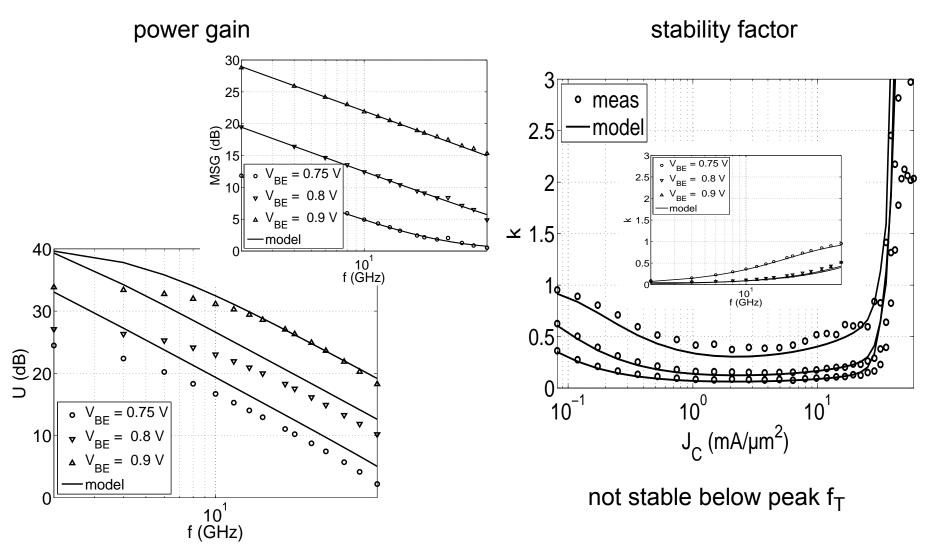

Temperature dependence of forward Gummel characteristics

=> very good agreement over wide bias and T range

IHP SGB25V technology (cont'd)


geometry scaling of transit frequency

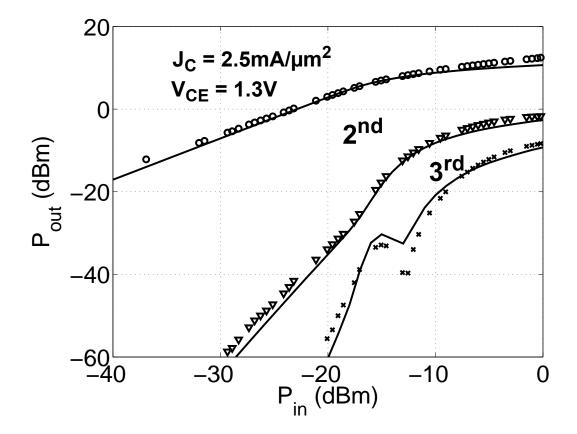
=> good agreement over geometry and wide bias range


IHP 500GHz technology

Temperature dependence of forward Gummel characteristics and transit frequency

=> very good agreement over wide bias and geometry range

IHP 500GHz technology (cont'd)



=> reasonable agreement over frequency and wide bias range

IHP 500GHz technology (cont'd)

Large-signal results for $A_{E0} = 0.12 \times 10 \mu m^2$ (4 in parallel)

harmonic distortion @ $f_0 = 8GHz$

=> very good agreement for dynamic characteristics

HICUM Workshop Summary and conclusions

Summary and conclusions

 observation of various physical effects both in advanced technologies (during DOTFIVE project) and other technologies measured in our lab

HICUM/L2 v2.31 extensions

- BC barrier effect & improved description of material composition in transfer current and g_m
- BC barrier effect in mobile charge
- temperature dependence of new parameters and of thermal resistance
- HF noise correlation model valid up to very high frequencies
- miscellaneous: flicker noise addition in RE, optimized NQS effect VA implement., pnp flag
- access to variety of (production) technologies for modle verification is very important
 otherwise difficult to make a model widely applicable throughout industry
- need better measurement capability for small- and large-signal model verification
- Goal for InP HBTs: extend HICUM/L2
 - add specific physical effects (as determined to be relevant)
 - enable geometry scaling => circuit optimization and statistical modeling
 - generate scalable HICUM/L0 and distributed HICUM/L4 automatically from L2

=> offer unified and flexible HBT modeling strategy

HICUM Workshop Summary and conclusions

Acknowledgments

- IHP, Frakfurt/Oder, Germany
- ST Microelectronics, Grenoble, France
- EU CATRENE project RF2THzSiSoC