# HICUM/L2 version 2.33

**Release Notes** 

CEDIC, December 2013

michael.schroeter@tu-dresden.de andreas.pawlak@tu-dresden.de anindya.mukherjee@tu-dresden.de

# **Operating point values**

Additional operating point values (as per user request)

- TK: actual device temperature in Kelvin
- DTSH: temperature increase due to self-heating



#### **Implementation flags**

- Calculation of operating point values during transient simulation was requested
  - can cause significant increase of simulation time during transient simulations due to derivatives being calculated at each time point and iteration
  - Defining the most comprehensive description of the model
- Code implementation
  - · Officially released code: OP-values are always calculated
  - Only for internal usage: two compiler flags are available (default in parentheses)
    - CALC\_OP (defined) -> Operating point section is turned on (undefine to decrease simulation time)
    - OP\_STATIC (undefined) -> Operating point values only calculated during DC simulation
    - Code:

```
`ifdef CALC_OP
  `ifdef OP_STATIC
    if (analysis("static")) begin: OPERATING_POINT
    `else
        begin: OPERATING_POINT
    `endif
```

#### $\rightarrow$ Suggestion from model developer:

- Named block in VA for OP-values -> no derivatives of values calculated there
- Optimized implementation of model into simulators (no loss of simulation speed)

# **Operating point values**

**Bug-fixes** 

- Possible division by zero for DC and AC *current gain* was removed by conditional statement and addition of  $g_{min}$ 
  - Code changes

```
IB = I(<b>);
IC = I(<c>);
...
if (IB != 0) begin
   BETADC = IC/IB;
end else begin
   BETADC = 0;
end
...
BETAAC = GMi/(gPIi+gPIx+`Gmin);
```

Moved OP-value block out of noise block

### **Bug-fixes**

- Moved voltage accesses below Model\_Initialization block
  - Code changes

```
Vbiei = type*V(br_biei);
....
`MODEL begin : Model_initialization
```

was changed to

end //of Model\_initialization
Vbiei = type\*V(br\_biei);
....

- Additional usage of abs() in white\_noise sources
  - Diode currents
  - Avoid issues for reversed biased pn-junctions

I(br\_bpei) <+ white\_noise(twoq\*abs(ibep), "ibep");</pre>

# **Ranges of NQS parameters**

- Allowd ranges of alit and alqf was reset
  - Allows 0 for both again
  - Improved conditional statements of NQS and correlated noise block
    - At least one of both parameters need to be larger 0
  - Also added correct backward compatibility
  - Code changes:

Parameter definition:

| parameter | real | alqf | = | 0.167 | from | [0:1]; |
|-----------|------|------|---|-------|------|--------|
| parameter | real | alit | = | 0.333 | from | [0:1]; |

Conditional statements:

if ((flnqs != 0 || flcomp == 0.0 || flcomp == 2.1) &&
 Tf != 0 && (alit > 0 || alqf > 0)) begin

and

if (flcono==1 && (alit > 0 || alqf > 0)) begin

#### **Noise sources**

- Added descriptive names to noise sources
  - Code changes:

```
I(br_bbp_i) <+ white_noise(fourkt/rbx_t, "thermal");
was changed to
I(br_bbp_i) <+ white_noise(fourkt/rbx_t, "rbx");</pre>
```

- Done for all noise sources
- Added abs() for all white noise sources

#### **Code optimization**

- Added ibets>0 to conditional statements for all tunneling current blocks
  - · Reduces executed code for tunneling current turned off
  - Code changes:

if (ibets > 0) begin : HICTUN\_T

- Done for all blocks relating the tunneling current
- Simplification of current gain formulation for correlated noise block

```
betad=ibei;
if (betad ibei > 0.0) begin
    betadin=betad;
    betan=it;
    betadc=betan/betad it/ibei;
end else begin
    betadc=0.0;
end
```