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7 Experimental Results
This chapter contains selected examples that demonstrate HICUM’s capabilities of modeli

as, frequency, geometry and temperature dependent transistor behaviour. If not specified
wise, all results were obtained using ascaleable single basic parameter set(cf. chapter 4 and 5).
The results cover not only a large variety of processes, ranging from low-speed (6 GHz) to
speed (50 GHz SiGe) processes and even an example for a vertical pnp, but also various m
operation (d.c. small-signal, large-signal). The major emphasis is on high-frequency (h.f.) ch
teristics and figures of merit that are related to h.f. (circuit) applications. Considering the a
mentioned variables (bias, geometry, temperature, frequency), model verification is becom
quite difficult task, the effort of which is often severely underestimated.

Wherever possible, the following comparisons are performed in normalized form and in v
bles that are related to circuit design; for instance, often the current density IC/AE is employed (to
allow process comparisons), and the bias points are defined by (IC/AE,VCE) . The results do not
contain examples for junction capacitance modeling, which has already been shown to be ac
The experimental results given below cover the following areas:
• d.c. characteristics including I-V and current gain curves as well as conductances vs. bia
• Bias dependence of transit timeτf and transit frequency fT. An accurate approximation of the

transit time and the junction capacitances, which are a fundamental (linearly independen
iables in HICUM, guarantee an accurate modeling of composite parameters, such as fT and y-
parameters.

• For small-signal characteristics, y-parameters are preferred, since they can be easier
directly to elements in the transistor equivalent circuit (e.g. [15,29,41]). The examples co
comparsions of all four y-parameters vs. frequency, bias, and geometry.

• High-speed switching is difficult to measure directly and accurately for today’s fast transs
therefore, HICUM was verified by 2D and 3D mixed-mode device/circuit simulation [42].
older (slower) processes, however, HICUM could be verified experimentally [26,34].

• Temperature dependent modeling has been pursued and compared to experimental d
several process generations (e.g. [34,35,46]), leading to reliable model formulations.

• Noise: both 1/f and high-frequency noise have been investigated as a function of bias
quency and geometry (cf. [3,4,5,53]) and have been compared to measurements.

• Non-linear h.f. distortion can be considered as another way to verify a model’s large-s
behavior. In the presented examples, the output power Pout as response to a single-tone inpu
power Pin is compared to measurements over frequency, bias and geometry for different
of transistors.

• Predictive and statistical modeling capability is important for reducing design cycle time
have not been included for bipolar applications in commercial simulators and design tool
physics-based and generic way. The given examples show fT as one of several useful figures o
merit (FoM) for high frequency applicatios; compared to other h.f. FoMs, fT is clearly defined
and can most easily be measured, although its measurement time is still not suitable for
tical data acquisition.

• Circuit results have been included for a CML ring-oscillator as standard benchmark circu
for digital applications. Sufficiently simple benchmark circuits for wireless applications
more difficult to obtain.
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or ex-
7.1 d.c. characteristics

Comparison between measurement (symbols) and HICUM (solid lines) from a single transist
traction  for a 12 GHz bipolar transistor [2]: (a) Gummel plot; (b) current gain.
VBC/V = 0,-2,-4; emitter size: 0.6*4.8µm2
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HICUM Experimental Results

or ex-
contd.:  d.c. characteristics

Comparison between measurement (symbols) and HICUM (solid lines) from a single transist
traction  for a 12 GHz bipolar transistor [2]: (a) output characteristics for IB=const;
(b) output conductance dIC/dVCE; emitter size:  0.6*4.8µm2
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HICUM Experimental Results

tran-
contd.:  d.c. characteristics

Comparison between measurement (symbols) and HICUM (solid lines) for a 25 GHz bipolar
sistor: (a)  Gummel plot; (b) normalized transconductance. VCE/V=0.5,0.8,1.5,3;
emitter size: 0.4*14µm2
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HICUM Experimental Results

tran-
contd.:  d.c. characteristics

Comparison between measurement (symbols) and HICUM (solid lines) for a 25 GHz bipolar
sistor: (a) output characteristics for VBE=const; (b) output conductance dIC/dVCE; emitter
size: 0.4*14µm2.
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iGe

ro-
contd.:  d.c. characteristics

Comparison between measurement (symbols) and HICUM (solid lines) for a 45 GHz IBM S
bipolar  transistor [51,52]: (a) collector current density; (b) base current density.
VCE/V=0.8,1.6,2.4; emitter size: 0.5*10µm2. Self-heating and avalanche breakdown are quite p
nounced for this transistor.
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-
xtrac-
M)
7.2 Transit frequency and transit time

Transit frequency vs. collector current density (VBC=const) for different bipolar processes. Com
parison between measurement (symbols) and HICUM (solid lines) from single parameter e
tion: (a) emitter size 0.5*10µm2, VBC/V=0,-5,-10 (the dashed lines are the results of the SPG
[18,46 ]; (b) emitter size 0.6*4.8µm2; VBC/V = 0.5, 0, -0.5, -2,-4 [2,18].
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HICUM Experimental Results

proc-
contd.:  Transit frequency and transit time

Comparison between measurement (symbols) and HICUM (solid lines) for a 25GHz bipolar
ess  [46]: (a) transit frequency; (b) transit time. Emitter size 0.4*14µm2, VCE/V=0.5,0.8,1.5,3.
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HICUM Experimental Results

ICUM
contd.:  Transit frequency and transit time

Comparison for the bias dependent transit frequency between measurement (symbols) and H
(solid  lines) for a 25GHz bipolar process. Transistor size: (a) 1.2*14µm2; (b) 0.4*1.4µm2.
VCE/V=0.5,  0.8, 1.5, 3.
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mea-

asure-
contd.:  Transit frequency and transit time

Bias dependent transit frequency of an IBM SiGe bipolar transistor. Comparison between

surement  (symbols) and HICUM (solid lines) [52]; emitter size 0.5*10µm2; VCE/V=0.8,1.6,2.4.

Bias dependent transit frequency of a SiGe bipolar process [2]. Comparison between me

ment  (symbols) and HICUM (solid lines); emitter size 0.4*2µm2; VBC/V = 0.5, 0, -0.5, -1, -1.5.
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7.

No hase of y12 to deviate from measurements.

Fr BC = 0.5 V (cf. fT curves): comparison
be n.
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3 High-frequency small-signal characteristics

te: real{y12} is very small and usually of little practical interest, but can cause the modeled p

equency dependence of Y-parameters for a 12 GHz transistor (0.6*4.8µm2) at IC/AE = 0.1mA/µm2, V
tween measurement (symbols) [2] and HICUM (lines). Single  transistor parameter extractio
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co

Fr BC = 0.5 V (cf. fT curves): comparison
be n.
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ntd.:  High-frequency small-signal characteristics

equency dependence of Y-parameters for a 12 GHz transistor (0.6*4.8µm2) at IC/AE = 0.34 mA/µm2, V
tween measurement (symbols) [2] and HICUM (lines).  Single transistor parameter extractio
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co

Fr VBC = -1 V (cf. fT curves): comparison
be n.
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ntd.:  High-frequency small-signal characteristics

equency dependence of Y-parameters for a 12 GHz transistor (0.6*4.8µm2) at IC/AE = 0.38 mA/µm2,
tween measurement (symbols) [2] and HICUM (lines).  Single transistor parameter extractio
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co

Fr *4.8at IC/AE = 0.38 mA/µm2, VBC = -1 V
(c nsistor parameter extraction.

12

  0.05215

  0.1043

30

60
0

70
300

330

0

2

j1

j1

 j2

−j2

s12

s22
) M. Schroter

CUM

ntd.:  High-frequency small-signal characteristics

equency dependence of S-parameters (in Smith and polar chart) for a 12 GHz transistor (0.6µm2)
f. fT curves): comparison between measurement (symbols) [2] and HICUM (lines).  Single tra
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co

Fr *4.8at IC/AE = 0.38 mA/µm2, VBC = -1 V
(c nsistor parameter extraction.
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ntd.:  High-frequency small-signal characteristics

equency dependence of S-parameters (in magnitude and phase) for a 12 GHz transistor (0.6µm2)
f. fT curves): comparison between measurement (symbols) [2] and HICUM (lines).  Single tra
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co

Fr VBC = -1 V (cf. fT curves): comparison
be n.
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ntd.:  High-frequency small-signal characteristics

equency dependence of H-parameters for a 12 GHz transistor (0.6*4.8µm2) at IC/AE = 0.38 mA/µm2,
tween measurement (symbols) [2] and HICUM (lines).  Single transistor parameter extractio
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co

Fr VBC = -3 V (cf. fT curves): comparison
be n.
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ntd.:  High-frequency small-signal characteristics

equency dependence of Y-parameters for a 12 GHz transistor (0.6*4.8µm2) at IC/AE = 0.12 mA/µm2,
tween measurement (symbols) [2] and HICUM (lines).  Single transistor parameter extractio
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co

Fr VBC = -3 V (cf. fT curves): comparison
be n.
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ntd.:  High-frequency small-signal characteristics

equency dependence of Y-parameters for a 12 GHz transistor (0.6*4.8µm2) at IC/AE = 0.425 mA/µm2,
tween measurement (symbols) [2] and HICUM (lines).  Single transistor parameter extractio
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HICUM Experimental Results
contd.:  High-frequency small-signal characteristics - power gain

Unilateral gain GU as a function of frequency for a 12 GHz transistor (0.6*4.8µm2) at various bias
points. Comparison between measurement (symbols) and HICUM (lines): (a) VBC = -1 V;
 (b) VBC = -2 V. Note the high accuracy even at current densities far beyond IC/AE(@peak fT).
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HICUM Experimental Results
contd.:  high-frequency small-signal characteristics - power gain

Unilateral gain GU as a function of frequency for a 25 GHz transistor (0.4*14µm2) at various bias
points.  Comparison between measurement (symbols) and HICUM (lines): (a) VCE = 0.5 V;
(b) VCE = 0.8 V. Note the high accuracy even at current densities far beyond IC/AE(@peak fT).
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HICUM Experimental Results

tran-
4

7.5 Temperature dependence: d.c. characteristics

Comparison between measurement (symbols) and HICUM (solid lines) for a 25 GHz bipolar
sistor: collector current density IC/AE vs. VBE for different temperatures. Emitter size: 0.4*1
µm2; VBC =  0 V.
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e-

erature
contd.:  Temperature dependence of transit time and frequency

(a) Transit time and (b) transit frequency vs. IC/AE for T = 125 C: comparison between measur
ment (symbols) and HICUM (solid lines) [46]. Emitter size: 0.4*14µm2; VCE/V = 0.5,0.8,1.5,3.
Note, that the results were generated with a single model parameter set, except for the temp
coefficients ofτ0.
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7.6 Low-frequency noise

Collector current noise spectral density SiC vs. frequency f for 25 GHz transistors at T = 25 C an
various bias points IC (cf. insert) and VCE= 1 V. Comparison between measurement (symbols) a
HICUM (lines): (a) AE0 = 0.4*14µm2, (b) AE0 = 0.8*14µm2.
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7.7 High-frequency noise

Minimum noise figure Fmin vs. frequency f for a 25 GHz transistor. Comparison between meas
ment (symbols) and HICUM (lines): (a) emitter size is 4*0.4*21µm2, IC/AE = 0.405mA/µm2,
VCE  = 1V; (b) emitter size is 0.8*14µm2, IC/AE = 0.03mA/µm2, VCE = 1V.

Comparison between measurement (symbols) and HICUM (lines) for a 25 GHz trans
(4*0.4*21µm2): (a) Minimum noise figure Fmin vs. collector current density IC/AE; (b) equivalent
noise  resistance Rn vs. collector current density.  f/GHz = 1, 2, 3; VCE = 1V.
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7.8 High-frequency distortion

Some general remarks are required for explaining and understanding the distortion resul
The transistors were measured on-wafer in a 50Ω system using the same h.f. pad configuratio

that is employed for small-signal S-parameter measurements. An automated measurement
was set-up which facilitates bias point sweeps [20]. The system was carefully calibrated in
to take into account all losses up to the device and to accurately obtain both output power Pin and
input power Pout at the transistor terminals for all relevant frequencies. Single-tone measurem
were performed at four different fundamental frequencies f1/GHz = (0.05, 0.1, 0.9, 1.8). The two
low frequencies at 50 and 100 MHz were chosen to be able to separate later the cause of no
arities during model comparison. The following table shows the relation between Pin specified in
dBm by the power sweeper (defined for a 50Ω load) and the respective voltage amplitude.

As response at the output, the signals at the respective fundamental frequency as well as
ond and third harmonic frequency (f2 and f3) were measured with a spectrum analyzer for differe
transistor types. The table below lists the frequencies that belong together. The resulting Poutat the
various frequencies can then be compared to model characteristics as a function of d.c. b
geometry. Figures of merit, such as the 1dB compression point and harmonic distortion, ca
be calculated.

For circuit simulation, the periodic steady-state method available in SPECTRE-RF was
However, time-domain based simulators seem to generate an incorrect d.c. component (pr
converted from the second harmonic) at the transistor input, which causes the d.c. bias poin
away at high input power. This (probably) numerical effect, which should not occur accordin
the measurement set-up, was not observed during harmonic balance simulations (using HP
with the same circuit and parameters. A corresponding correction algorithm was develope
implemented in MATLAB, the results of which were verified by HP-MDS.

For logistical reasons the measurements were carried out on a different die of the same wa
parameter extraction was performed on. Process variations across the wafer might cause
increased deviations between model and measurements. Nevertheless, the model still turne
be quite accurate.

P [dBm] -40 -30 -20 -10

 [V] 6.4 20 64 200

f1/GHz 0.05 0.1 0.9 1.8

f2/GHz 0.1 0.2 1.9 3.6

f3/GHz 0.15 0.3 2.7 5.4

v̂

 (c) M. Schroter 165
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es):
contd.:  High-frequency distortion

Pout vs. Pin for f0 = 0.9 GHz; comparison between measurement (symbols) and HICUM (lin
(a) 10 GHz (power) transistor (0.4*14µm2) at IC/AE = 0.05 mA/µm2, VCE = 0.8 V;
(b) 25 GHz transistor (0.4*14µm2) at IC/AE = 0.13 mA/µm2, VCE = 3 V.
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r

contd.:  High-frequency distortion

Pout vs. collector current density IC/AE at f0 = 0.9 GHz for a 10 GHz (power) transisto
(0.4*14µm2); comparison between measurement (symbols) and HICUM (lines):
(a) Pin  = -20 dBm; (b) Pin = -10 dBm. VCE = 0.8 V.
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HICUM Experimental Results
contd.:  High-frequency distortion

Poutvs. collector current density IC/AE at f0 = 0.9 GHz for a 25 GHz transistor (0.4*14µm2); com-
parison between measurement (symbols) and HICUM (lines):
(a) Pin  = -20 dBm; (b) Pin = -10 dBm. VCE = 0.5 V.
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HICUM Experimental Results
contd.:  High-frequency distortion

Poutvs. collector current density IC/AE at f0 = 0.9 GHz for a 25 GHz transistor (0.4*14µm2); com-
parison between measurement (symbols) and HICUM (lines):
(a) Pin  = -20 dBm; (b) Pin = -10 dBm. VCE = 3 V.
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HICUM Experimental Results
contd.:  High-frequency distortion

Poutvs. collector current density IC/AE at f0 = 1.8 GHz for a 25 GHz transistor (0.4*14µm2); com-
parison between measurement (symbols) and HICUM (lines):
(a) Pin  = -20 dBm, VCE = 0.5 V; (b) Pin = -10 dBm, VCE = 3 V.
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HICUM Experimental Results
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7.9 Predictive modeling

Transit frequency vs. collector current density for several process variations: base line (cir
10% decrease of selectively implanted collector dose (squares), 25% increase of epi
wC (diamonds). Comparison between measurement (symbols) and HICUM predictions
lines).  VCE = 0.8 V; emitter size: 0.4*14µm2.

Collector current density at fixed VBE = 0.8V for the same process variants as above; compari
between measurement (o) and HICUM predictions (-). VCE= 0.8V; Emitter size: 0.4*14µm2
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ess:
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contd.:  Predictive modeling

Transit frequency vs. collector current density for several variations of a “high-voltage” proc
base line (circles),≈5% increase of epi collector doping (squares), 25% increase of epi w
wC (diamonds). Comparison between measurement (symbols) and HICUM predictions
lines).  VCE= 0.8 V; emitter size: 0.4*14µm2.
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(a)
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7.11 Circuit results

A few remarks are required here. In principle, there is agreement between design and mo
engineers that model validation on benchmark circuits is beneficial for both sides (cf chapt
However, this validation loop is rarely closed in an industrial environment for various reas
such as simply the large schedule and product pressure on one hand and the very limited re
on the other hand. In addition, it is difficult to obtain agreement on which benchmark circuits
isfy at least the majority of design applications. For digital applications, often frequency divi
and ringoscillators consisting of CML or ECL gates are employed; experimental results for th
ter will be shown below. For h.f. analog (e.g.. wireless) applications, not only the selection bu
the design and testing itself is much more difficult. A larger variety of designs that are suite
on-wafer testing are required. As of now, results of only few production circuits are available
agree well with model “predictions”, but which have not been included here due to proprietary
sons.

Oscillation frequency foscvs. current density (Itail/AE) per stage for a CML ring-oscillator fabricat
ed in a 25 GHz process; comparison between measurement (symbols) and HICUM (lines).
Due to power considerations, the smallest manufacturable emitter size (0.4*0.7µm2) has been
used; no specific or other model parameters were adjusted for this example.
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