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7 Experimental Results

This chapter contains selected examples that demonstrate HICUM'’s capabilities of modeling bi-
as, frequency, geometry and temperature dependent transistor behaviour. If not specified other-
wise, all results were obtained usingealeable single basic parameter et chapter 4 and 5).

The results cover not only a large variety of processes, ranging from low-speed (6 GHz) to high-
speed (50 GHz SiGe) processes and even an example for a vertical pnp, but also various modes of
operation (d.c. small-signal, large-signal). The major emphasis is on high-frequency (h.f.) charac-
teristics and figures of merit that are related to h.f. (circuit) applications. Considering the above
mentioned variables (bias, geometry, temperature, frequency), model verification is becoming a
quite difficult task, the effort of which is often severely underestimated.

Wherever possible, the following comparisons are performed in normalized form and in varia-
bles that are related to circuit design; for instance, often the current degléityis employed (to
allow process comparisons), and the bias points are defineg:ly(Vcg) . The results do not
contain examples for junction capacitance modeling, which has already been shown to be accurate.
The experimental results given below cover the following areas:

» d.c. characteristics including I-V and current gain curves as well as conductances vs. bias.
» Bias dependence of transit tinte and transit frequency;f An accurate approximation of the

transit time and the junction capacitances, which are a fundamental (linearly independent) var-
iables in HICUM, guarantee an accurate modeling of composite parameters, syamasyt

parameters.

» For small-signal characteristics, y-parameters are preferred, since they can be easier linked
directly to elements in the transistor equivalent circuit (e.g. [15,29,41]). The examples contain
comparsions of all four y-parameters vs. frequency, bias, and geometry.

» High-speed switching is difficult to measure directly and accurately for today’s fast transsitors;
therefore, HICUM was verified by 2D and 3D mixed-mode device/circuit simulation [42]. For
older (slower) processes, however, HICUM could be verified experimentally [26,34].

* Temperature dependent modeling has been pursued and compared to experimental data for
several process generations (e.g. [34,35,46]), leading to reliable model formulations.

* Noise: both 1/f and high-frequency noise have been investigated as a function of bias, fre-
guency and geometry (cf. [3,4,5,53]) and have been compared to measurements.

* Non-linear h.f. distortion can be considered as another way to verify a model’s large-signal
behavior. In the presented examples, the output poygraB response to a single-tone input

power R, is compared to measurements over frequency, bias and geometry for different types

of transistors.

» Predictive and statistical modeling capability is important for reducing design cycle time, but
have not been included for bipolar applications in commercial simulators and design tools in a
physics-based and generic way. The given examples shawdne of several useful figures of

merit (FoM) for high frequency applicatios; compared to other h.f. FoMss €learly defined

and can most easily be measured, although its measurement time is still not suitable for statis-
tical data acquisition.

 Circuit results have been included for a CML ring-oscillator as standard benchmark circuit for
for digital applications. Sufficiently simple benchmark circuits for wireless applications are
more difficult to obtain.
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7.1 d.c. characteristics

Gummel plot
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Comparison between measurement (symbols) and HICUM (solid lines) from a single transistor ex-
traction for a 12 GHz bipolar transistor [2]: (&) Gummel plot; (b) current gain.
Vgc/V = 0,-2,-4; emitter size: 0.6*4.8n°
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contd.: d.c. characteristics
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Comparison between measurement (symbols) and HICUM (solid lines) from a single transistor ex-
traction for a 12 GHz bipolar transistor [2]: (a) output characteristicgf@mohst;

(b) output conductance @dVg; emitter size: 0.6*4,l§Bm2
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contd.: d.c. characteristics
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Comparison between measurement (symbols) and HICUM (solid lines) for a 25 GHz bipolar tran-
sistor: (a) Gummel plot; (b) normalized transconductangg/\X~0.5,0.8,1.5,3;

emitter size: 0.4*14m?
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contd.: d.c. characteristics
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sistor: (a) output characteristics forgi=const; (b) output conductance MliVog emitter
size: 04*141m
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contd.: d.c. characteristics
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Comparison between measurement (symbols) and HICUM (solid lines) for a 45 GHz IBM SiGe
bipolar transistor [51,52]: (a) collector current density; (b) base current density.

VceV=0.8,1.6,2.4; emitter size: 0.5*én°. Self-heating and avalanche breakdown are quite pro-
nounced for this transistor.

(c) M. Schroter 139



HICUM
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7.2 Transit frequency and transit time
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Transit frequency vs. collector current densitys@#const) for different bipolar processes. Com-
parison between measurement (symbols) and HICUM (solid lines) from single parameter extrac-
tion: (a) emitter size O.5*1lﬁrn2, V%C/V:O,-S,-lo (the dashed lines are the results of the SPGM)
[18,46 ]; (b) emitter size 0.6*48n<; Vg/V = 0.5, 0, -0.5, -2,-4 [2,18].
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contd.: Transit frequency and transit time
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Comparison between measurement (symbols) and HICUM (solid lines) for a 25GHz bipolar proc-
ess [46]: (a) transit frequency; (b) transit time. Emitter size OM4VCE/V:O.5,O.8,1.5,3.
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contd.: Transit frequency and transit time
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contd.: Transit frequency and transit time
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Bias dependent transit frequency of an IBM SiGe bipolar transistor. Comparison between mea-
surement (symbols) and HICUM (solid lines) [52]; emitter size O.ﬁﬁi?OVCE/V:O.S,l.G,ZA.
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Bias dependent transit frequency of a SiGe bipolar process [2]. Comparison between measure-
ment (symbols) and HICUM (solid lines); emitter size omé; Vgc/V=05,0,-05, -1, -1.5.
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7.3 High-frequency small-signal characteristics

Note: real{y; 5} is very small and usually of little practical interest, but can cause the modeled phag®alaviate from measurements.
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Frequency dependence of Y-parameters for a 12 GHz transistor (Qué2).at Ic/AE = 0.1mAUM?, Ve = 0.5V (cf. f; curves): comparison
between measurement (symbols) [2] and HICUM (lines). Single transistor parameter extraction.
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contd.: High-frequency small-signal characteristics _ _
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Frequency dependence of Y-parameters for a 12 GHz transistor (qmﬁ%).at Ic/Ag=0.34 mAl,me, Vgc = 0.5V (cf. ff curves): comparison
between measurement (symbols) [2] and HICUM (lines). Single transistor parameter extraction.
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contd.: High-frequency small-signal characteristics
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Frequency dependence of Y-parameters for a 12 GHz transistor (qm*r%l).at Ic/Ag=0.38 mAl,1m2, Vge =-1V (cf. f1 curves): comparison
between measurement (symbols) [2] and HICUM (lines). Single transistor parameter extraction.
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contd.: High-frequency small-signal characteristics
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Frequency dependence of S-parameters (in Smith and polar chart) for a 12 GHz transistorumé*AtSC/AE =0.38 mAumz, Vgc=-1V
(cf. fr curves): comparison between measurement (symbols) [2] and HICUM (lines). Single transistor parameter extraction.
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contd.: High-frequency small-signal characteristics
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contd.: High-frequency small-signal characteristics
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between measurement (symbols) [2] and HICUM (lines). Single transistor parameter extraction.
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contd.: High-frequency small-signal characteristics _ _
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contd.: High-frequency small-signal characteristics
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between measurement (symbols) [2] and HICUM (lines). Single transistor parameter extraction.

(c) M. Schroter 151



HICUM Experimental Results

contd.: High-frequency small-signal characteristics
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contd.: High-frequency small-signal characteristics
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contd.: High-frequency small-signal characteristics
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contd.: High-frequency small-signal characteristics
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Frequency dependence of Y-parameters for a 25 GHz transistor (qu?;at Ic/Ag=0.67 mA41m2, Ve =3V (cf. f; curves): comparison
between measurement (symbols) and HICUM (lines).
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contd.: High-frequency small-signal characteristics
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Y-parameters as a function of collector current densityg¥ const.) for a 25 GHz transistor (0.4*am2) atf=1 GHz: comparison between
measurement (symbols) and HICUM (lines}gW= 0.5, 0.8, 1.5, 3.
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contd.: High-frequency small-signal characteristics
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Y-parameters as a function of collector current densityg¥ const.) for a 25 GHz transistor (1.2’11412) atf =1 GHz: comparison between
measurement (symbols) and HICUM (linesygW= 0.5, 0.8, 1.5, 3.
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contd.: High-frequency small-signal characteristics - power gain
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Unilateral gain G as a function of frequency for a 12 GHz transistor (0.6[5141:5) at various bias
points. Comparison between measurement (symbols) and HICUM (lines)da) M V;

(b) Vgc = -2 V. Note the high accuracy even at current densities far beythg @peak $).
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contd.: high-frequency small-signal characteristics - power gain
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Unilateral gain G as a function of frequency for a 25 GHz transistor (0.41t%) at various bias
points. Comparison between measurement (symbols) and HICUM (linesyga) W5 V;
(b) Vcg = 0.8 V. Note the high accuracy even at current densities far bey#g®@peak §).
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Experimental Results

7.4 high-speed switching

(2D mixed-mode device/circuit simulation [42]; for experimental results of an older process see [26])

0 V(>0) 1.05 0.95
250 iy L v
(a) 00 M V]
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W)

(a) Transistor inverter (worst-case for switching behavior comparison). (b) Transit time vs. collector current density of a 14 GHz bipolar tran-
sistor. (c) Switching-on and -off behavior fqf (top) and g (bottom) into and out of, respectively, the bias poigtiA Fig. (b). Comparison
between device simulation (solid lines), HICUM with NQS effects (dash-dotted lines), and HICUM without NQS effects (dash¢tjn
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7.5 Temperature dependence: d.c. characteristics

-10 | | | |

0.5 0.6 0.7 0.8 0.9 1
Vor [V]

10

Comparison between measurement (symbols) and HICUM (solid lines) for a 25 GHz bipolar tran-
sistor: collector current density:]Ag vs. Vg for different temperatures. Emitter size: 0.4*14

l_lmz; VBC =0V.
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contd.: Temperature dependence of transit time and frequency

(b)

1.5
J c [MA/um]
(a) Transit time and (b) transit frequency vg/Ag for T = 125 C: comparison between measure-

ment (symbols) and HICUM (solid lines) [46]. Emitter size: 0.4¥1#%; Vg/V = 0.5,0.8,1.5,3.
Note, that the results were generated with a single model parameter set, except for the temperature

coefficients oft.
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7.6 Low-frequency noise

10 E T T T

IC(MA) = 1..0; 0.47, 0:12, 0.02

f [Hz]

Collector current noise spectral density 8s. frequency f for 25 GHz transistors at T = 25 C and
various bias pointsd (cf. insert) and \.g = 1 V. Comparison between measurement (symbols) and
HICUM (lines): (a) Acg = 0.4*14um?, (b) Agg = 0.8*14um?.
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7.7 High-frequency noise
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Minimum noise figure E;;, vs. frequency f for a 25 GHz transistor. Comparison between measure-
ment (symbols) and HICUM (lines): (a) emitter size is 4*0.412%, I/Ag = 0.405mAM?,

Ve = 1V; (b) emitter size is 0.8*14n?, Ic/Ag = 0.03mAM?, Vg = 1V.
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Comparison between measurement (symbols) and HICUM (lines) for a 25 GHz transistor
(4*0.4*21um2): (a) Minimum noise figure i, vS. collector current density-lAg; (b) equivalent

noise resistancef¥s. collector current density. f/IGHz =1, 2, 2£F 1V.
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7.8 High-frequency distortion

Some general remarks are required for explaining and understanding the distortion results.

The transistors were measured on-wafer in @ S§stem using the same h.f. pad configuration
that is employed for small-signal S-parameter measurements. An automated measurement system
was set-up which facilitates bias point sweeps [20]. The system was carefully calibrated in order
to take into account all losses up to the device and to accurately obtain both output ppared P
input power B at the transistor terminals for all relevant frequencies. Single-tone measurements
were performed at four different fundamental frequencigsiz = (0.05, 0.1, 0.9, 1.8). The two
low frequencies at 50 and 100 MHz were chosen to be able to separate later the cause of non-line-
arities during model comparison. The following table shows the relation betwgepdtified in
dBm by the power sweeper (defined for &390ad) and the respective voltage amplitude.

P [dBm] -40 -30 -20 -10
V] 6.4 20 64 200

As response at the output, the signals at the respective fundamental frequency as well as the sec-
ond and third harmonic frequency @nd §) were measured with a spectrum analyzer for different
transistor types. The table below lists the frequencies that belong together. The regyjtatgie
various frequencies can then be compared to model characteristics as a function of d.c. bias and
geometry. Figures of merit, such as the 1dB compression point and harmonic distortion, can also
be calculated.

f)/GHz || 0.05 0.1 0.9 1.8
f,/lGHz || 0.1 0.2 1.9 3.6
fg/GHz || 0.15 0.3 2.7 5.4

For circuit simulation, the periodic steady-state method available in SPECTRE-RF was used.
However, time-domain based simulators seem to generate an incorrect d.c. component (probably
converted from the second harmonic) at the transistor input, which causes the d.c. bias point to run
away at high input power. This (probably) numerical effect, which should not occur according to
the measurement set-up, was not observed during harmonic balance simulations (using HP-MDS)
with the same circuit and parameters. A corresponding correction algorithm was developed and
implemented in MATLAB, the results of which were verified by HP-MDS.

For logistical reasons the measurements were carried out on a different die of the same wafer the
parameter extraction was performed on. Process variations across the wafer might cause slightly
increased deviations between model and measurements. Nevertheless, the model still turned out to
be quite accurate.
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contd.: High-frequency distortion
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-25
P [dBm]
Pout VS. R, for fo = 0.9 GHz; comparison between measurement (symbols) and HICUM (lines):
(a) 10 GHz (power) transistor (0.4*1#?) at I/Ag = 0.05 mAUM?, Vg = 0.8 V;

(b) 25 GHz transistor (0.4*1#n<) at Ic/Ag = 0.13 mAIm?, Vcg=3V.
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contd.: High-frequency distortion
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Pout Vs. collector current densityclAg at fp = 0.9 GHz for a 10 GHz (power) transistor
(0.4*14um2); comparison between measurement (symbols) and HICUM (lines):
(a) B, =-20 dBm; (b) R =-10dBm. \(g=0.8 V.
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contd.: High-frequency distortion
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P,tVs. collector current densitylAg at fy = 0.9 GHz for a 25 GHz transistor (0.4*#?); com-
parison between measurement (symbols) and HICUM (lines):
(@) B, =-20 dBm; (b) R =-10dBm. \(g=0.5V.
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contd.: High-frequency distortion
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P,tVs. collector current densitylAg at fy = 0.9 GHz for a 25 GHz transistor (0.4*#?); com-
parison between measurement (symbols) and HICUM (lines):
(@) By, =-20 dBm; (b) B =-10dBm. \(g=3 V.
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contd.: High-frequency distortion
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P,,tVs. collector current densityAg at f; = 1.8 GHz for a 25 GHz transistor (0.4*fith?); com-
parison between measurement (symbols) and HICUM (lines):
(@) B, =-20dBm, \eg=0.5V; (b) R, =-10dBm, \(g=3 V.
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7.9 Predictive modeling
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Transit frequency vs. collector current density for several process variations: base line (circles),
10% decrease of selectively implanted collector dose (squares), 25% increase of epi width
wc (diamonds). Comparison between measurement (symbols) and HICUM predictions (solid

lines). Vcg = 0.8 V; emitter size: 0.4*1Am?.
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Collector current density at fixedpg = 0.8V for the same process variants as above; comparison
between measurement (o) and HICUM predictions (o ¥0.8V; Emitter size: 0.4*]4511m2
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contd.: Predictive modeling
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Transit frequency vs. collector current density for several variations of a “high-voltage” process:
base line (circles)=5% increase of epi collector doping (squares), 25% increase of epi width

Wwc (diamonds). Comparison between measurement (symbols) and HICUM predictions (solid
lines). \Vcg= 0.8V, emitter size: 0.4*1|4m2.
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7.10 Statistical modeling
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Statistical distribution curves of peak for a “high-speed” process. Comparison between (a) measurements and (b) HICUM predictions from
process monitors. M = 2 V; emitter size: 0.4*14m~. The results were obtained from 5 different lots.
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contd.: Statistical modeling

30 T T T T 50 T T T T T
Measurement (-—): mean= 24.19, std= 0.612 Measurement (——): mean= 10.77, std= 0.302
Simulation (-): mean= 24.30, std= 0.582 Simulation (-): mean= 10.80. std= 0.301
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Statistical distribution curves of peak for transistors with 0.4*14m? emitter size. Comparison between measurements (histogram and solid
lines) and HICUM predictions from process monitors (dashed lines): (a) “high-speed” process; (b) “high-voltage” process. The results were
obtained from 5 different lots.
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7.11 Circuit results

A few remarks are required here. In principle, there is agreement between design and modeling
engineers that model validation on benchmark circuits is beneficial for both sides (cf chapter 4).
However, this validation loop is rarely closed in an industrial environment for various reasons,
such as simply the large schedule and product pressure on one hand and the very limited resources
on the other hand. In addition, it is difficult to obtain agreement on which benchmark circuits sat-
isfy at least the majority of design applications. For digital applications, often frequency dividers
and ringoscillators consisting of CML or ECL gates are employed; experimental results for the lat-
ter will be shown below. For h.f. analog (e.g.. wireless) applications, not only the selection but also
the design and testing itself is much more difficult. A larger variety of designs that are suited for
on-wafer testing are required. As of now, results of only few production circuits are available that
agree well with model “predictions”, but which have not been included here due to proprietary rea-
sons.

0.5’ O meas n
sSimu

0 | | | | | | |
0 0.5 1 15 2 2.5 3 3.5 4

Tail current per stage [mA/umZ]

Oscillation frequencydscVvs. current density (i/Ag) per stage for a CML ring-oscillator fabricat-
ed in a 25 GHz process; comparison between measurement (symbols) and HICUM (lines).
Due to power considerations, the smallest manufacturable emitter size (Qud).fAas been
used; no specific or other model parameters were adjusted for this example.
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