HICUM - Update

M. Schroter

Chair for Electron Devices and Integrated Circuits
University of Technology at Dresden, Germany

www.iee.et.tu-dresden.de/iee/eb/eb_homee.html
Outline

- Availability in simulators
- Model support
- Roadmap (migration and future development)
Availability in Simulators

simulator	code made available	implement. ongoing	test phase	release	comments
---------------	---------------------	-------------------	------------	---------	
ELDO-RF				10/99	available to customers
SPECTRE-RF				10/99	• documentation being cleaned up
					• CNXT version = ref. for release
ADS				7/00	• combination with ICCAP
					• excess phases: ADS related issue
Smart-SPICE				11/00	• combination with UTMOST
APLAC	x (?)				target release date: 11/00
HSPICE		x			• combination with AURORA
Xpedion	x				code sent as per request
SABER	x				code sent as per request
TEKSPICE					in cooperation with MAXIM
DEVICE	-	-	-		reference simulator (except HB)
Model support

Software and general maintenance (CMC)

• support of implementation in circuit simulators
 • timely bug fixing
 • provide and maintain “original” model code; version control of “original” model code
 • testing and qualification of implementation - options:
 • provide test parameters and data to EDA companies
 • test at CEDIC (depending upon simulator license)

• model documentation
 • parameter list and default values (zeroed and test); OP output in simulators
 • physical background of the model and its equations

• support of parameter extraction
 (provide generic, i.e. not tool specific, support for implementing parameter extraction sequence in commercial software packages)

• maintain web-site

⇒ full-time service that has to be paid for to ensure certain quality

⇒ hire a person for this job (post-doc, ...)
 • contingent on commitment for funding (from CMC or other sources)

• Cost estimate:
 • loaded labor cost: US $50k (at the present exchange ratio)
 (need to pay reasonable salary, otherwise loose person to industry)
 • travel expenses: US $6k (to attend 4 CMC meetings/year)

Note: effort and cost are basically the same as for MOS models ...
Model development support
Semiconductor industry

• present cooperation partners (and contacts)
 • Alcatel (E. Gerhardt)
 • Atmel (W. Kraus)
 • Conexant (M. Matloubian, P. Zampardi)
 • IBM (D. Harame, J. Johnson, K. Newton, ...)
 • Infineon (P. Brenner, J. Berkner, ...)
 • Maxim (S. Simpkins, D. Harper, ...)
 • Motorola (C. McAndrew)
 • Silicon Wave
 • STM (A. Juge, D. Celi, ...)

• Activities include projects in the areas of
 • modeling
 • establishing geometry scalable parameter extraction and model parameter
generation; transfer and implementation of appropriate test structures.
 • predictive and statistical modeling
 • extraction of “pilot” parameter sets
 • *extensions: suggestions of improvements and participation in development are encouraged and welcome* - will continue to do coordination
 • circuit design
 • courses on modeling and response to application relevant questions
 • benchmark circuit design
 • process development
 • feedback and debugging via special test structures and physics-based parameter
eextraction
 • model parameter prediction for next generation processes

⇒ most of the time is presently being spent on the above tasks
Documentation

www: eigroup.org/cmc and iee.et.tu-dresden.de/iee/eb/eb_homee.htm

• Model description
 • www: updated equations and default values for parameters; new OP data suggestion
 • complete CMC presentation of Dec. 98 can be obtained from: mschroter@ieee.org

• Model parameter extraction
 • www: generic extraction procedure (incl. basic idea of some test structures)
 • www: overview on recommended measurements
 • detailed description of test structures (for cooperation partners)
 • detailed description of geometry scalable parameter extraction (for cooperation partners)

• Experimental results on many different processes
 • see www: geometry scalable models for production processes
 • see www: fitted on single transistors (mostly CMC data sets)
Roadmap

Migration path: options, suggestions, and overview on “investment”

- ... from single transistor fitting to geometry scalable modeling capability
 - implement appropriate test structures (also useful for process monitoring and debugging)
 - implement multiple geometry parameter extraction sequence (similar to CMOS)

- ... from SGPM to HICUM - assuming geometry scalable modeling capability
 - understand (physical) background of HICUM to maximize its usefulness
 - incremental additional effort for extracting model-specific parameters of HICUM
 - library generation: parameters of both models can be generated at the same time (e.g., by TRADICA)

- ... from SGPM to HICUM - assuming single transistor fitting
 - understand how to simplify HICUM
 - implement simplified, fitting based, parameter extraction sequence

⇒ documentation and courses are available to facilitate the migration and to support associated activities
 (limited information on single-transistor-fitting though)
Model development

(mostly industrially funded activities)

- SiGe HBTs (both types)
 - issues in >50GHz processes
 - incorporation of features from SiGeM (s. Prof. Rein´s group at RUB) where possible

- III-V HBTs
 - measurement based verification for industrial processes
 - electrothermal modeling

- VNP modeling
 - verification of suitability; parameter extraction and TRADICA capability
 (initial results for minority charge and transit time model (s. D. Celi/STM, 1998) are encouraging)

- Parameter extraction
 - develop improved/new methods and improve reliability of extraction

- Simple version (Level0)
 - finalize and implementation
 - parameter extraction: either from Level2 data or directly on single devices; i.e. no extra effort for user
Acknowledgments

MS is especially thankful to

• the contact persons at the various supporting companies for discussions, suggestions and contributions to HICUM related aspects such as model implementation, formulation and documentation, and

• Mentor Graphics and Agilent for software donations.