Parameter extraction - methods and status

J. Krause, A. Pawlak, M. Schroter
Chair for Electron Devices and Integrated Circuits (CEDIC)
University of Technology Dresden, Germany

krause@iee.et.tu-dresden.de
http://www.iee.et.tu-dresden.de/iee/eb/eb_homee.html

12th HICUM Workshop, Newport Beach, CA (USA), 2012
Outline

• Introduction
• Extraction flow
• Basic concepts
• List of test structures
• Joint extraction of RE and Rth
• Transit times
• Transfer current
• Summary
Introduction

• increasing number of physical effects and demand for highly accurate large- and small-signal compact models increases model complexity
 ⇒ increased number of model parameters and correlation between physical effects
 ⇒ parameter extraction becomes more difficult and effort increases

• model requirements from circuit design
 • accurate and valid over wide electrical, temperature, frequency, and geometry range
 • fast execution and numerically reliable

• requirements for parameter extraction
 • well-defined, sufficiently simple, fast and reliable procedures
 • standard measurement equipment should be sufficient for data acquisition
 • as small as possible model parameter correlation
 • clear and reliable procedures for parameter extraction
 • extraction procedures as automated as possible

• this presentation
 • review of general basic concepts and general extraction flow
 • detailed discussion of extraction method for parameters of new HICUM/L2 version 2.31
Motivation

- Different model levels for finding a trade-off between calculation effort and accuracy
- based on one compact model as physics-based and accurate as possible for generating the other model levels
Extraction flow

General methodology

• based on a set of data from measurements or simulation
• must be compared to results of compact model simulations

Measured/simulated data

Preparation
• view original data
• choose and reorder into data structure
• conversion into required data format/structure

Extraction
• set up extraction loop
• extract geometry factors
• extract temperature coefficients
• extract bias dependent parameters

Verification
• calculate model parameters for selected devices
• simulate model with circuit simulator
• plot model against original data

Agreement model/original data OK

Model library

Agreement model/original data not OK
Extraction methodology for HICUM

- depending on availability of test structures and different geometries
- sequence for process-based geometry scalable model parameter extraction for HICUM/L2
Single geometry vs. scalable extraction

• conventional method (single geometry fitting)
 • no information on geometry effects, necessitating
 (a) simplified equivalent circuit and model ⇒ loss of accuracy
 (b) non-physical model parameters (through optimization, merging …)
 • every transistor required (= anticipated) for circuit design has to be available on the wafer
 • requires "golden" wafer
 => no scaling and statistical modeling, no circuit optimization, large extraction effort

• process-based scalable approach
 • employs variety of transistors and special test structures ⇒ linear independent parameter extraction
 • requires somewhat higher initial investment: "few" devices have to be measured before the first parameter set can be generated ⇒ but very efficient model generation afterwards
 • physical values ⇒ enables statistical modeling and shift to nominal parameters
 => enables scaling, statistical modeling, circuit optimization, significant reduction of overall extraction effort for foundries

• scaling helps to understand physical effects and their geometry dependence
 ⇒ process-based scalable approach also aids process development
Basic concepts

Geometry Scaling

- γ_C, γ_B - factors for taking into account collector and emitter perimeter related current

- Single transistor representation

- Lumping area and perimeter related portions of collector current into a single component

 \Rightarrow effective emitter area A_E:

 $$A_E = A_{E0} + \gamma_C P_{E0} \text{ with } \gamma_C = \frac{J_A}{J_P}$$

- Effective dimensions b_E, l_E:

 $$b_E = b_{E0} + 2\gamma_C \text{ and } l_E = l_{E0} + 2\gamma_C$$

- Include emitter corner rounding where required

- Similar definition for γ_B, γ_{jE}
Standard geometry scaling

- Determination of process specific parameters
- Example: base current component from BE diode
 - Investigation of the characteristics, where only one junction is biased ⇒ set $V_{BC}=0V$ ⇒ BE diode
 - use long structures for the extraction (i.e. $l \gg b$)
 - scaling equations can be simplified to
 \[I = J_A A + J_P P \]
 ⇒ area normalization: \[\frac{I}{A} = J_A + J_P \frac{P}{A} \]
 - plot I/A vs. P/A and extract
 - J_A from extrapolated intercept with y axis
 - J_P from slope
 - apply same concept to charges and capacitances
 ⇒ determine process specific area and perimeter portion by simple linear regression
Geometry scaling pitfalls

standard scaling

- linear scaling of electrical parameters of the internal transistor with emitter dimensions

non-standard scaling

- may lead to non-linear scaling with emitter dimensions or linear scaling with different (apparent) area and perimeter parameters

- caused by a variety of effects and fabrication conditions

=> can cause significant additional effort for accurate scaling
Frequency range selection

... for determining dynamic quantities from measured data

\[C_{JE} = \frac{\text{Im}\{Y_{11} + Y_{12}\}}{\omega} \]

\[f_T = \frac{f}{\text{Im}\{Y_{11}/Y_{21}\}} \]

- too low frequency: measurement inaccurate (noisy) and self-heating effects
- too high frequency: influence of RC time constants \(\Rightarrow \) decrease in \(C_{BE} \), increase in \(f_T \)
- Note: frequency range needs to be adapted to process performance
List of test structures

Special test structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Pad</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrodes</td>
<td>DC</td>
<td>- at least three (better four) widths: (b_{E0\text{min}} \geq 4^*b_{E0\text{min}})</td>
</tr>
<tr>
<td>- internal base sheet resistance</td>
<td>[AC]</td>
<td>- two different lengths for at least one width</td>
</tr>
<tr>
<td>- (Q_{p0})</td>
<td></td>
<td>- structure with (b_{E0}=0\mu m) if possible ⇒ base link</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External base sheet resistance:</td>
<td>DC</td>
<td>necessary for extracting the external components of the base resistance</td>
</tr>
<tr>
<td>- base contact resistance</td>
<td></td>
<td>and the scaling for different contact configurations and layouts later on</td>
</tr>
<tr>
<td>- silicided sheet resistance</td>
<td></td>
<td>- poly-on-mono and -oxide not required if fully silicided</td>
</tr>
<tr>
<td>- poly-on-mono sheet resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- poly-on-oxide sheet resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- [- base link resistance]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector resistance components</td>
<td>DC</td>
<td>necessary for geometry scaling of collector resistance</td>
</tr>
<tr>
<td>- buried layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- sinker and collector contact</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electro-thermal modeling</td>
<td>AC</td>
<td>verification of correct self-heating extraction and modeling of thermal coupling</td>
</tr>
</tbody>
</table>

- Note: these structures can also be used as process control monitors

⇒ *linear independent* extraction of external/parasitic parameters and elements
List of test structures (cont’d)

<table>
<thead>
<tr>
<th>Type</th>
<th>Pad</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Long transistors with different emitter width in CBEBC configuration | AC | basic set for scalable parameter extraction ⇒ 3...5 widths with \(b_{E0\text{min}} \geq 4 \times b_{E0\text{min}} \):
- use for CV, DC and transit times
- can also be used for \(R_E \) extraction |
| short transistors with typical dimensions for circuit design | AC | for verifying geometry scaling (e.g. BEC, ...) |
| CEB transistors | AC | single base transistors with \(b_{E0\text{min}} \) ⇒ geometry scaling of \(r_B \) |
| CBEBEBBC transistors | AC | double-emitter transistors with \(b_{E0} = \text{min, max} \) ⇒ verification, finger and parameter scaling |
| Power cells: arrays of power transistors | AC | multi-emitter transistor arrays ⇒ for application and verification of distributed scalable modeling (HICUM/L4) |
| Deembedding structures: Open, Short, Through | AC | for transistors above, depend on pad layout and device size |
Tetrode structure

- **application**
 - extraction of base sheet resistance components (internal, link) and Q_{p0}
 - process control monitor for base region

- emitter encloses base contact $B_1 \Rightarrow$ no current flow through base poly between B_1 and B_1
- current between B_1 and B_2 is forced to flow underneath the emitter
- 2 different lengths \Rightarrow correction of current spreading at the edges
- total resistance measured

\[
R = \frac{\Delta V_{B2B1}}{\Delta I} = r_x + \frac{r_{SB1} b E_0}{2 \Delta l}
\]

- r_x: sum of all external resistance components
Resistor structures

chains with 3...4 Kelvin contacts and two different lengths (l >> b_{contact})

- apply voltage between two terminals i and j:

\[
R_{ij} = \frac{V_{ij}}{I_{ij}} = 2R_K + R_{bl,ij} = 2\frac{r_{KC}}{l} + r_{Sbl}\frac{b_{ij}}{l}
\]

- subtracting current of short from that of long structure removes non-ideal edge current

\[
R_{\Delta ij} = \frac{V_{ij}}{I_{ij,\text{long}} - I_{ij,\text{short}}} = 2\frac{r_{KC}}{\Delta l} + r_{Sbl}\frac{b_{ij}}{\Delta l}
\]

- edge corrected resistances for two pairs of terminals allow to determine sheet resistance...

\[
e.g., \ r_S = \left(R_{\Delta 23} - R_{\Delta 12}\right)\frac{\Delta l}{b_{23} - b_{12}}
\]

- ...and length specific contact resistance
Joint extraction of \(R_E \) and \(R_{th} \)

- Based on simplified self-heating model \(\Delta T = R_{th} I_C (V_{CE} - R_E I_E - R_{Cx} I_C) \)

- Variables to be known:
 - From measurement: \(I_C, I_E, V_{CE} \), also needed: \(I_B, V_{BE} \)
 - From test structures or assumption: \(R_{Cx} \)

- Method:
 - Measurement of output characteristics with fixed \(I_C \) (or forced \(I_B \))
 - Calculation of \(\Delta T \) from measured \(V_{BE} \) and \(I_B \) and known dependence \(I_B = I_{BES}(T) \exp \left(\frac{V_{BE} - R_E I_E}{V_T(T)} \right) \)
 - In forward active operating range, almost linear dependence \(\Delta T(V_{CE}) \)
 - Linear extrapolation to \(\Delta T=0 \) \(\Rightarrow \) from equation above it follows from \(R_{th}>0 \) and \(I_C>0 \)

\[
V_{CE0} - R_E I_E - R_{Cx} I_C = 0 \quad \Rightarrow \quad R_E = \frac{V_{CE0} - R_{Cx} I_C}{I_E}
\]

- BUT: \(R_E \) already used for calculation of \(\Delta T \) \(\Rightarrow \) Iteration for \(R_E \)
- Calculation of \(R_{th} \) from slope of \(\Delta T(V_{CE}) \)
Results of combined R_E and R_{th} extraction

- Extraction for all temperatures separately

- Influence of uncertainties of previously extracted R_{Cx}
Transit times

• Determination of transit time τ_f from measurements:

$$\tau_f(V_{BCi}, i_{Tf}) = \frac{1}{2\pi f_T} - (R_E + R_Cx)C_{BC} - \sum \frac{C_{BB}}{g_m}, \quad C_{BB} = \text{sum of all capacitances at B node}$$

• transconductance: $g_m = I_T/V_T$ (classical method) or $g_m = \lim_{f \to 0} Y_{21}(f)$.

• However: both g_m approaches lead to errors due to inconsistency of equation itself

⇒ need to use complete deembedding of internal transistor according to compact model equivalent circuit

• includes all parasitic time constants and impact of frequency dependence

• also: need to include bias dependence of (internal) depletion capacitances

⇒ consistent deembedding method has been implemented and used
Extraction of τ_{f0}.

- Classical method uses linear extrapolation of $\tau_f(1/I_C)$ curve and a_{jEi} from slope at inflection point.

- Better: global fit of deembedded Y_{11} with C_{jEi} and τ_{f0} in the medium current range
 - $g_m = \text{Re}\{Y_{21}\}$ holds for each frequency for deembedded Y_{21}
 - No influence of time constants caused by series resistances
 - Fitting of a_{jEi} and τ_{f0} for the best agreement of resulting capacitance

Rightarrow consistency is key to accurate modeling
Deembedding of internal transistor

- use two-port parameters of each external element.

\[
Z_{rE} = \begin{bmatrix} R_E & R_E \\ R_E & R_E \end{bmatrix}
\quad \text{and} \quad Z_{int} = Z_{ext} - Z_{rE}
\]
Extraction of barrier effect

- three model parameters
 - $V_{C_{bar}}$, $a_{C_{bar}}$ and $I_{C_{bar}}$ => shape of barrier effect.

=> new formulation captures shape more accurately for HBTs
Transfer current

• forward bias ($V_{CE} \geq 0.2V$) HICUM/L2 transfer current equation reads:

$$I_T = \frac{c_{10}}{Q_{p0} + h_{jEi} Q_{jEi} + h_{jCi} Q_{jCi} + Q_{fT}} \exp\left(\frac{V_{BEi}}{V_T}\right)$$

• weighted minority charge is composed of different portions:

$$Q_{fT} = h_{f0} \tau_{f0} i_{Tf} + h_{fE} \Delta Q_{Ef} + \Delta Q_{Bf} + h_{fC} \Delta Q_{Cf}$$

⇒ Transfer current is related to the small signal parameters!

• extracted model parameters:
 • GICCR constant c_{10}
 • Weight factors h_{jEi}, h_{jCi}, h_{f0}, h_{fE}, h_{fC}

• required:
 • all parameters for C_{jEi} and C_{jCi} including temperature dependence
 • all parameters for the minority charges
 • Q_{p0} from tetrode measurements
 (⇒ may be set to arbitrary value, but this will lead to small deviations and also incorrect modeling of internal base resistance)
Low current region ⇒ parameters c_{10}, h_{jEi}

- extraction of bias dependent or bias independent h_{jEi} depending on normalized g_m

\[
g_m \left(\frac{I_T}{V_T} \right) = 1 - \frac{V_T}{Q_{pT}dV_{BEi}} \bigg|_{VCE} \quad \text{with} \quad \frac{dQ_{pT}}{dV_{BEi}} \bigg|_{VCE} = h_{jEi}C_{jEi} + Q_{jEi} \frac{dh_{jEi}}{dV_{BEi}}
\]

\[
\text{and} \quad h_{jEi} = h_{jEi0}[\exp(u) - 1]/u \quad \text{with} \quad u = a_{h_{jEi}}(1 - (V_{BEi}/V_{DEi})^{z_{Ei}})
\]

normalized g_m is bias independent

$\Rightarrow h_{jEi} = \text{const, } a_{h_{jEi}} = 0$

normalized g_m is bias dependent

$\Rightarrow h_{jEi}(V_{BEi}), a_{h_{jEi}} > 0$
Reverse Early effect

• In case of \(a_{hjEi} > 0 \) ⇒ separate extraction at low injection (\(V_{BEi} = V_{BE} \)) and \(V_{BC} = 0 \)

\[
I_S = \frac{c_{10}}{Q_{p0}}, \quad h(V_{BE}) = \frac{h_{jEi}(V_{BE})}{h_{jEi0}}, \quad V_{Er} = \frac{Q_{p0}}{h_{jEi0}C_{jEi0}}, \quad v_j = \frac{Q_{jEi}(V_{BE})}{C_{jEi0}}
\]

\[
\Rightarrow I_T = I_C = \frac{I_S}{1 + h(V_{BE})v_j(V_{BE})/V_{Er}} \exp\left(\frac{V_{BE}}{V_T}\right) \Rightarrow V_{Er} + hv_j = \frac{V_{Er}I_S \exp(V_{BE}/V_T)}{I_C}
\]

• unknown constants \(V_{Er} \) and \(I_S \) can be removed by using four combinations of \(I_C(V_{BE}) \) values

\[
\frac{h(v_1, a_{hjEi})v_j(v_1) - h(v_2, a_{hjEi})v_j(v_2)}{h(v_3, a_{hjEi})v_j(v_3) - h(v_4, a_{hjEi})v_j(v_4)} = \frac{\exp(V_{BE1}/V_T) - \exp(V_{BE2}/V_T)}{I_{C1}} - \frac{\exp(V_{BE3}/V_T) - \exp(V_{BE4}/V_T)}{I_{C4}}
\]

\[
\Rightarrow a_{hjEi} \text{ can now be calculated by solving non-linear equation above}
\]

• Note: differences between voltages may not be too small to avoid errors due to noise. In practical application, \(\Delta V_{BE} = 30 \text{ mV} \) between each voltage was sufficient.
Extraction of a_{hjEi}

- extraction bias range criteria
 - V_{BE} large enough \Rightarrow avoid too noisy results
 - V_{BE} low enough \Rightarrow avoid errors due to high-current effects and self-heating
 - sweep center point within bias region
 \Rightarrow $a_{hjEi} = \text{average within region}$

- perform extraction for each temperature
 - bias range to be adapted to temperature
 \Rightarrow temperature dependence of a_{hjEi}
 - extraction of temperature coefficient ζ_{hjEi} according to model equation

$$a_{hjEi}(T) = a_{hjEi}(T_0)\left(\frac{T}{T_0}\right)^{\zeta_{hjEi}}$$

\Rightarrow good agreement
Extraction of h_{jEi0} and c_{10}

- Rewrite transfer current (at low injection):

$$hQ_{jEi} = -\frac{Q_{p0}}{h_{jEi0}} + \frac{c_{10}}{h_{jEi0}} \frac{\exp(V_{BE}/V_T)}{I_T}$$

- $h = 1$ for $a_{hjEi} = 0$ or $h(a_{hjEi}, V_{BEi})$ for $a_{hjEi} > 0$

- Plot $\frac{\exp(V_{BEi}/V_T)}{I_T}$ vs. hQ_{jEi}

- From linear fit:
 - h_{jEi0} from intercept with y-axis and known Q_{p0}
 - c_{10} from slope and known h_{jEi0}

- Performed for each temperature
 - \Rightarrow extract ΔV_{gBE} and ζ_{vgBE} from

$$h_{jEi0}(T) = h_{jEi0}(T_0) \exp\left(\frac{\Delta V_{gBE}}{V_T}\left(\frac{T}{T_0}\zeta_{vgBE} - 1\right)\right)$$
Extraction of mobile charge weight factor h_{f0}

- For reliable results, device temperature needs to be calculated:
 - $\Delta T = I_T V_{CEi} R_{th}$ with $I_T = I_C$ from measurements
 ⇒ non-linear equation $I_C(V_{CE} - I_C r_{Cx}(\Delta T) - I_E r_E(\Delta T)) R_{th}$ solved at each bias point

- at $T = T_0 + \Delta T$ ⇒ $Q_{pT}(T) = \frac{c_{10}(T) \exp(V_{BEi} / V_T)}{I_C}$ with $V_{BEi} = V_{BEi} - I_B R_B(T) - I_E R_E(T)$

- mobile charge for each operating point
 - $Q_{jT} = Q_{pT} - Q_{p0}(T) - h_{jEi}(V_{BEi}, T) Q_{jEi}(V_{BEi}, V_T) - h_{jCi} Q_{jCi}(V_{BCi}, T)$ @ $V_{BCx} = 0$
 - Extraction of $h_{f0} = \lim_{I_T \to 0} \frac{Q_{jT}}{I_T \tau_{f0}} = h_{f0}(T_0) \exp\left(\frac{\Delta V_{gBE}(T)}{V_T} \left(\frac{T}{T_0} - 1\right)\right)$ for each temperature

![Graphs showing the extraction process](image)
Extraction of h_{fE}

- calculate $h_{fE} = Q_{fT,\text{high}}/\Delta Q_{Ef}$ with $Q_{fT,\text{high}} = Q_{fT} - h_{f0} \tau_{f0} I_C$ at each temperature T
 - different device temperature due to impact of self-heating
 ⇒ several h_{fE} for each ambient temperature

- plot h_{fE} vs. I_C/I_{CK}

 ![Graphs showing $Q_{fT,\text{high}}/\Delta Q_{Ef}$ vs. I_C/I_{CK} for $T = 25°C$ and $T = 75°C$](image)

- select bias range where ΔQ_{Ef} has largest influence (e.g. $I_T/I_{CK}=0.5$)
 => h_{fE} = from each curve with corresponding self-heating corrected temperature

- apply similar procedure for extraction of h_{fC}
Summary

• increasing number of physical effects and demand for highly accurate large- and small-signal compact models increases model complexity
 ⇒ increased number of model parameters
 ⇒ increased parameter extraction effort

• **automated** extraction procedure and method depository ⇒ reliable results

• inaccurate models can result from (in this priority)
 • inaccurate or **inconsistent** determination of device quantities (e.g. transit time)
 • inadequate parameter extraction methods (e.g. scalable vs. single device)
 • inaccurate measurements
 • inadequate model equations

• Note:
 • **extraction methods and procedures depend on model equivalent circuit**
 (e.g., the base impedance value is different in different models)
 • **use (linear) independent measurements** as much as possible for obtaining physically correct parameter values (e.g. cannot extract R_B, R_{CX}, parasitic caps from single device structure)
 • **not all model parameters are needed for every process technology**!
 ⇒ you need to know which effects are relevant for your process and designers
 ⇒ helps reducing parameter extraction effort
Smoothing of noisy measurement data

- smoothing method used: square interpolation

- Smoothing of noisy collector current based on normalized transconductance.

- Smoothing of noisy collector current based on normalized transconductance.