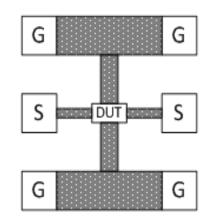
HF characterization of SiGe HBTs up to 325 GHz

L. Galatro¹, A. Pawlak², M. Schröter^{3,4}, M. Spirito¹

¹TU Delft, EEMCS, Dept. of Microelectronics, 2628 CD Delft, The Netherlands

²Infineon, Munich, Germany

³TU Dresden, Chair for Electron Dev. & Integr. Circuits, 01062 Dresden, Germany ⁴University of California San Diego, ECE Dept., La Jolla, USA

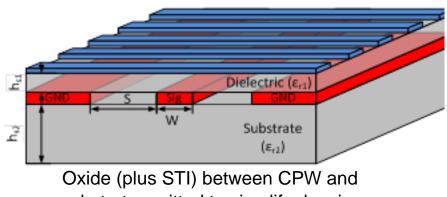

HICUM Workshop 2018
Rohde & Schwarz
Munich, Germany

OUTLINE

- Introduction
- Concept of the CL-ICPW
- Cal kit design
- TRL calibration
- Comparison of compact model with deembedded measurements
- Conclusions

Introduction

- Recent developments in HBT technology (SiGe, InP) are attractive for mmand sub-mm-wave applications
- Evaluation and verification of compact models at mm- and sub-mm-wave frequencies is very important for circuit design, but lacking due to
 - costly equipment
 - difficulty of calibration/deembedding
- Beyond 220 GHz, accuracy of conventional procedure for calibration/deembedding becomes questionable:
 - calibration and wafer substrate material are different
 - probe pad arrangements differ between ISS and wafer
 - ISS cal structures loose their characteristics at very high frequencies and behave differently than on wafer
 - => need direct on-wafer calibration, preferably up to DUT reference plane


=> explore feasibility for direct on-wafer calibration and perform first SiGe HBT compact model evaluation at 220...325 GHz

(see: IEEE Trans. Microw. Theory & Techniq., Vol. 65, No. 12, pp. 4914-4924, 2017)

Concept of the CL-ICPW

CPW options

- CPWs on Si suffer high losses due to conductive substrate => shielding of Si substrate via (patterned) metal ground plane (M1)
- On-chip calibration/deembedding requires TLs in the same metal level as DUT => shield not possible for CPW in M1
- Possible solution: place ground plane above M1 as close as possible => leads to very narrow line width and large resistance (loss)
- Viable alternative: replace ground plane by *floating metal stripes* with minimum possible distance (typically given by M1 to M2 separation) => larger part of EM energy above M1 CPW, reduced losses in Si

substrate omitted to simplify drawing

- Patterned shield with orthogonal floating bars avoids Eddy currents => slow-wave CPW line with capacitive load
 - => structure of capacitively loaded (CL) inverted CPW (CL-ICPW)

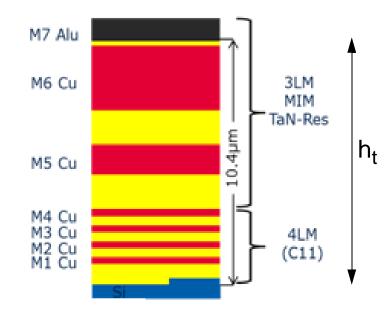
Analytical model for cal kit design

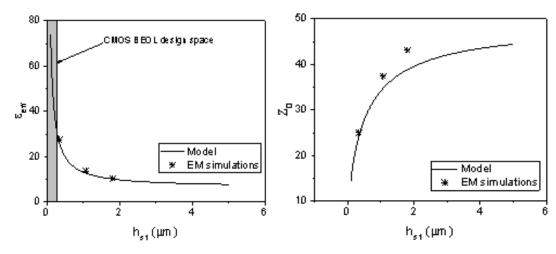
- strongly diverse dimensions in vertical and horizontal direction lead to large computation times
 - => simplified analytical model for saving time, but also for cal kit design
- analytical model was derived using conformal mapping (assuming $S >> h_s$ and metals as ideal conductors)
- effective permittivity ($k_0 = S/(S+2W)$)

$$\varepsilon_{eff} = \frac{\varepsilon_{r, Si} + 1}{2} + \frac{\varepsilon_{r, ox} WK(k'_0)}{4h_s} \underbrace{K(k'_0)}_{K(k_0)}$$

contribution from CPW above Si sub-contribution from capacitive load of strate (no shield on top)

patterned shield on top


- phase velocity: $v_{ph} = c / \sqrt{\epsilon_{eff}}$
- characteristic impedance: $Z_0 = \frac{1}{C_{tot}v_{nh}}$ with $C_{tot} = \varepsilon_{eff}C_{air}$


=> design variables: width W and spacing S of CPW, distance h_S to shield

CL-ICPW and cal kit fabrication

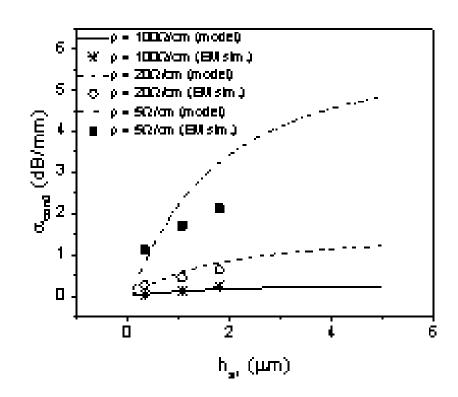
130 nm BiCMOS process technology (B11HFC of Infineon)

- SiGe HBTs: f_T , $f_{max} = (250, 380)$ GHz
- BEOL:
 - Cu (M1 to M6), Al (M7)
 - $-h_s = (0.34, 1.07, 1.8) \mu m$
 - $h_t = 10.4 \mu m$
- CPW for calibration of analytical model vs EM simulation:
 - $-W = 5 \mu m, S = 10 \mu m$
 - different h_s values
 - ε_{r.Si} = 11.9, ε_{r.ox} = 4.1
 - f = 220...325 GHz
 - $-Z_0 = 30 \dots 70 \Omega$
- Good agreement between model and EM simulation (f = 300 GHz)

Loss in the CL-ICPW

... for a wide range of substrate conductivities

$$f = 300 \text{ GHz}$$

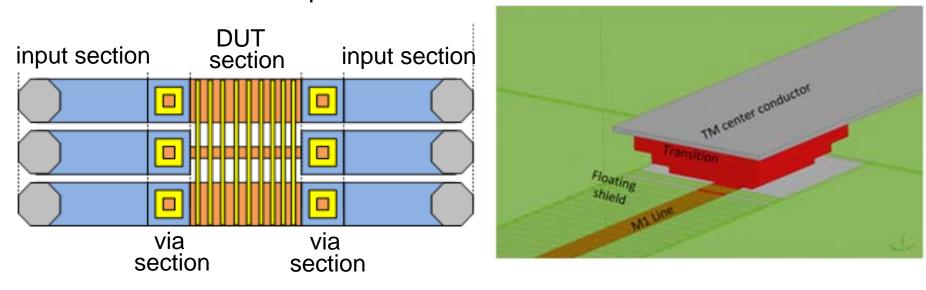

 dielectric losses due to the Si substrate:

$$\alpha_G = 8.66 A_{Si} \frac{Z}{10 \rho_{Si} K(k')}, \quad k = \frac{W}{2S + W}$$

 portion of EM field in the substrate represented by

$$A_{Si} = \frac{\varepsilon_{r, Si} + 1}{2\varepsilon_{eff}}$$

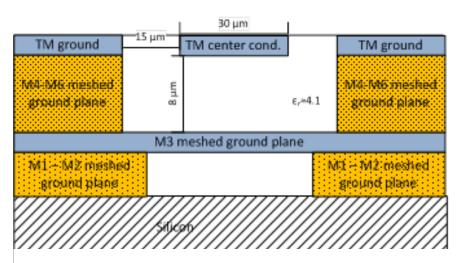
- losses decrease
 - for higher substrate conductivity
 - with smaller distance of shield

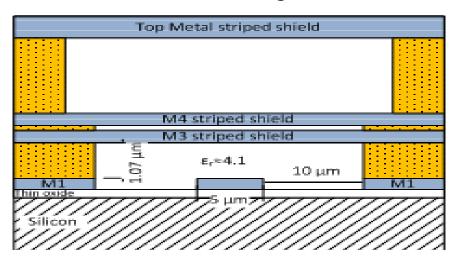

=> good agreement of analytical model with EM simulation for M2 shielding layer and up to 20 Ω cm Si conductivity

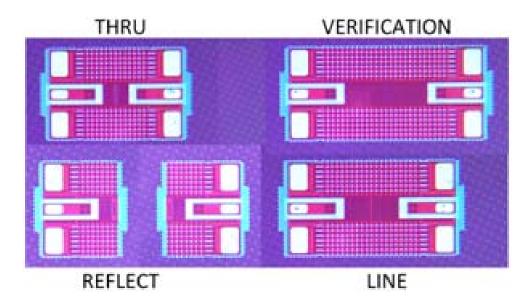
Cal kit design

Basic calibration/deembedding structure

schematic top view

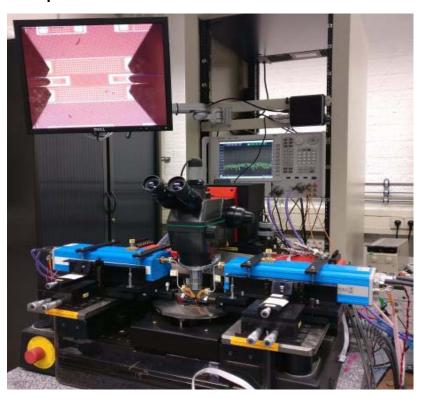

3D view


- signal line width equals pad width (30 μ m) gap S = 15 μ m => Z_0 = 35 Ω => close to Z_0 (CL-ICPW) = 34 Ω
- obelisk-type transition from top layer (30 μm) to M1 (5 μm) CPW
- M3 chosen as meshed ground plane in input section and as floating shield in DUT region (for TLs only, not when transistor is present)
- shield: 2 μm wide metal stripes and fill factor of 50%
 M4 added to reduce losses due to field dispersion through M3


Cal kit structures

input region

DUT region



- designed for operation in 220...325 GHz
- 130 μm launch lines
- Thru: 150 μm CL-ICPW
- Shorts at 75 μm
- add'l 230 & 310 μm lines

TRL calibration

Measurement set-up and approaches

- semi-automatic probe station
 - repeatable probe pressure and placement

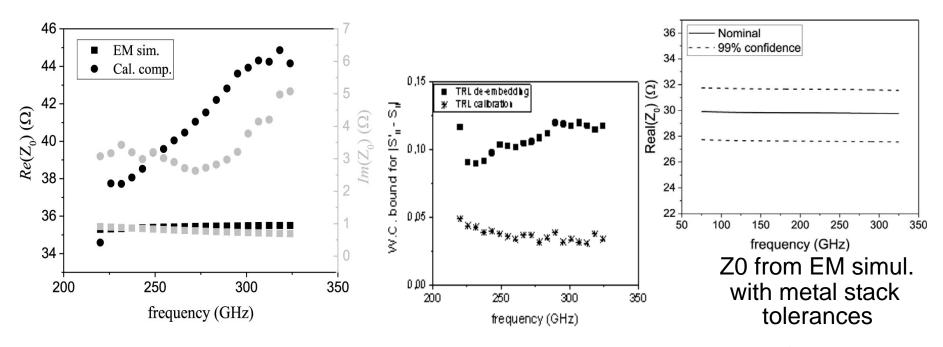
Approach

- 1. probe tip calibration using TRL cal-kit on fused silica
 - => reference for cal comparison method
- 2. TRL measurement of new on-chip cal-kit => calculation of charact. impedance Z_0

$$Z_0 = Z_{sys} \sqrt{\frac{(1 + S_{11}^2) - S_{21}^2}{(1 - S_{11}^2) - S_{21}^2}}$$

S: renorm. to system impedance (50 Ω)

=> allows to determine unknown Z_0 from known Z_0 of system

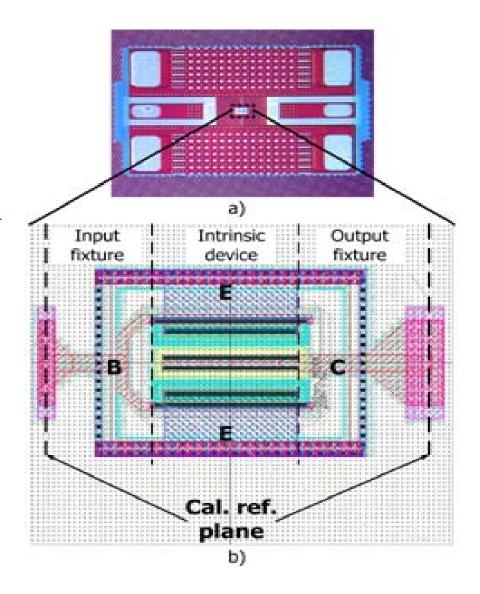

Approaches compared:

- calibration comparison method
- simulation-based Z₀ extraction

Extraction of characteristic impedance

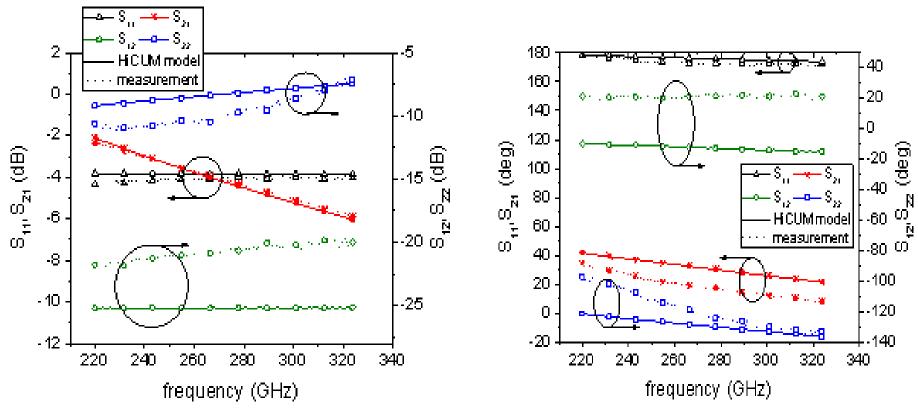
TRL "deembedding" versus TRL "calibration"

- TRL deembedding = two-step method:
 - 1. calibration on fused silica substrate
 - 2. deembedding using on-wafer TRL structures
- TRL calibration: one-step method, using just on-wafer TRL structures



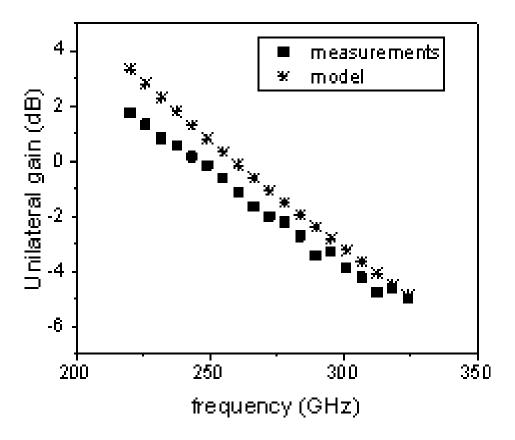
=> TRL calibration with characteristic impedance calculation from EM simulation yields much smaller error

Comparison of compact model with deembedded measurements


Investigated SiGe HBT

- device size: 2 x 0.22 μm x 5 μm
- operating point close to peak f_T: (V_{BE}, V_{BE}) = (0.91, 1.5)V
- HF layout
 - reference plane at end of CL-ICPW feed line
 - small additional "pad" and line required for connecting CL-ICPW to device
 - => related S param. determined from EM simulation and used to correct measured device S-parameters
- direct calibration using corresponding fused silica substrate
- HICUM/L2 parameters not available in PDK
 - => generated from scaling tool

HICUM/L2 comparison to measurements at 220 to 325 GHz


S parameters referred to system characteristic impedance $Z_{\rm sys}$ = 50 Ω

- excellent agreement for S₂₁ and S₁₁ with small phase difference in S₂₁
- reasonable agreement for S₂₂ (missing Su coupling network)
- larger deviations in S₁₂ (small absolute value)

HICUM/L2 comparison to measurements

unilateral power gain, f = 220 325 GHz

- => good agreement between compact model and measurements
- deviations partially due to missing substrate coupling network and inaccuracy of predicted parasitic (external) capacitances

Conclusions

- Difficulty of conventional calibration/deembedding methods has been circumvented by direct on-wafer calibration up to DUT reference plane
- Proposed method is based on
 - CL-ICPW implemented on wafer to access DUT (at lowest metal level)
 - EM simulation for determining the characteristic TL impedance
 - dedicated calibration/deembedding kit in fused silica substrate
 - (m)TRL calibration
- Analytical model for CL-ICPW can be used for designing required test structures
- Measured S parameters from direct calibration have been used for first evaluation of SiGe HBT compact model (HICUM/L2) in 220 ... 325 GHz range
 - => good agreement between model and measurement

Future work

- apply method to devices with different sizes
- investigate deviations in S₂₂, S₁₂ between compact model and measured data
- extend method to higher frequencies

Acknowledgments

German Science Foundation DFG SFB 912