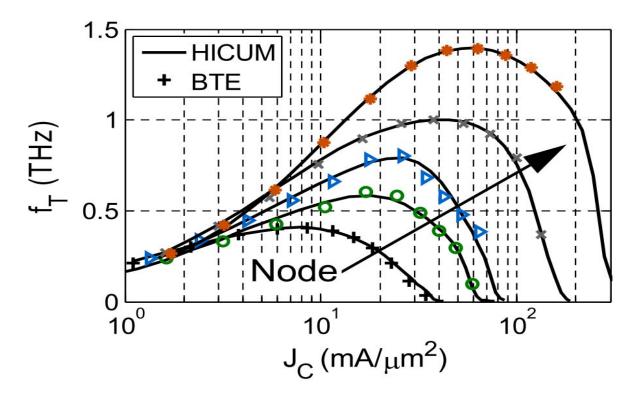
Charge partitioning of the intrinsic HBT according to the TICCR

M. Krattenmacher, M. Schröter


18th HICUM Workshop, Rohde & Schwarz, Munich, Germany June 19th, 2018

Content

- Introduction
- Compact modeling approach
- Comparison to device simulation
- Summary

Introduction

Motivation of this work

Modeling in the terahertz gap?

Predictions of dynamic behavior of charges on physical basis necessary!

[1] M. Schröter, T. Rosenbaum, P. Chevalier, B. Heinemann, S. P. Voinigescu, E. Preisler, J. Böck, and A. Mukherjee, "SiGe HBT technology: Future trends and TCAD-based roadmap", Proc. of the IEEE, vol. 105, no. 6, pp. 1068-1086, 2017.

The Transient Integral Charge-Control Relation (TICCR)

TICCR [2] yields closed-form analytical solution for 1D current densities:

$$j_C(t) = j_T(t) - q \int_0^{x_{bl}} \eta_C \left(R + \frac{\partial n}{\partial t}\right) dx$$

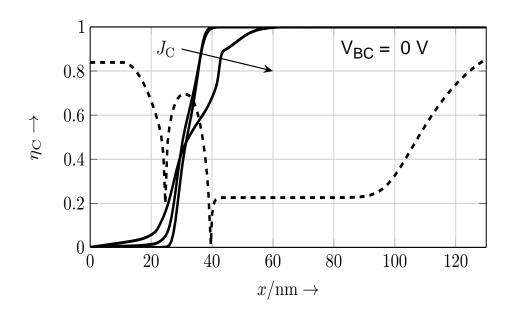
$$j_E(t) = j_T(t) + q \int_0^{x_{bl}} \eta_E \left(R + \frac{\partial n}{\partial t}\right) dx$$

common transfer current component equal to GICCR (except for h_f)

$$j_{T}(t) = qV_{T}\mu_{nr}n_{ir}^{2} \frac{\exp\left(\frac{v_{B'E'}}{V_{T}}\right) - \exp\left(\frac{v_{B'C'}}{V_{T}}\right)}{\int_{0}^{x_{bl}} h_{v}h_{g}p dx}$$

=> can be directly applied to HICUM

=> Focus here on time dependent terms of TICCR current density


[2] H. Klose and A. Wieder, "The transient integral charge control relation: A novel formulation of the currents in a bipolar transistor," IEEE Trans. Electron Dev., vol. 34, no. 5, pp. 1090-1099, 1987.

Charge partitioning

partitioning functions:

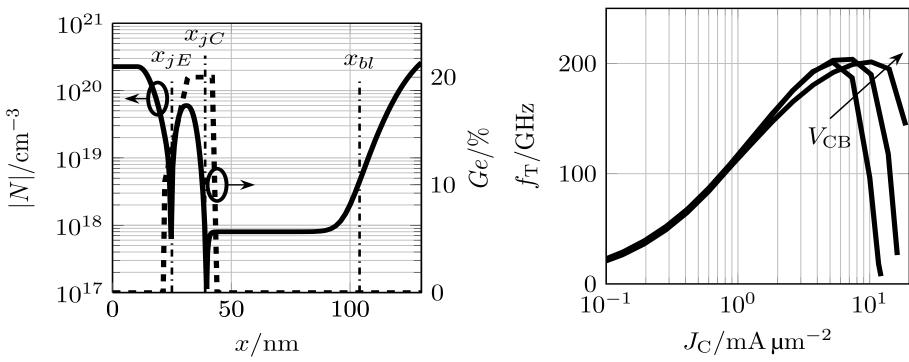
$$\eta_C(t) = \frac{\int_0^x h_v h_g p d\xi}{\int_0^{x_{bl}} h_v h_g p dx}$$

$$\eta_E(t) = 1 - \eta_C$$

with GICCR weight functions

$$h_{v}(t) = \exp\left(\frac{v_{B'E'}(t) - \varphi_{p}(x, t)}{V_{T}}\right). \quad h_{g}(t) = \frac{\mu_{nr}n_{ir}^{2}}{\mu_{n}(x, t)n_{i}^{2}(x)}$$

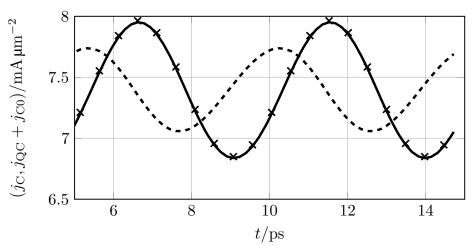
=> η_C (η_E) determines fraction of charge that is supported by C (E) terminal during dynamic operation

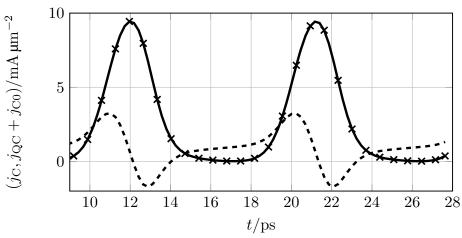

ullet weak bias dependence up to medium $J_{\mathbb{C}}$

Selected transistor structure

10^{21}

transit frequency


- Integration limits of the TICCR according to [3]
- DD transport dominant
 - for more advanced structures => use augmented DD transport


M. Schroter, S. Lehmann, and A. Pawlak, "Why is there no internal collector resistance in HICUM?", IEEE Bipolar/BiCMOS Circ. and Technol. Meeting (BCTM), pp. 142-145, 2016.

Comparison of TICCR with device simulation

- sinusoidal monofrequent input signal with frequency f
- small-signal operation
 - OP: $(J_C, V_{BC}) = (7.39 \text{ mA/}\mu\text{m}^2, 0\text{V})$ => peak f_T
 - $f = 203 \text{ GHz} (= \text{peak } f_T)$
 - 2.5 mV V_{BE} amplitude
- large-signal operation
 - OP: $(J_C, V_{BC}) = (1.26 \text{ mA/}\mu\text{m}^2, 0 \text{ V})$
 - $f = f_T = 131 \text{ GHz}$
 - 70 mV V_{BE} amplitude

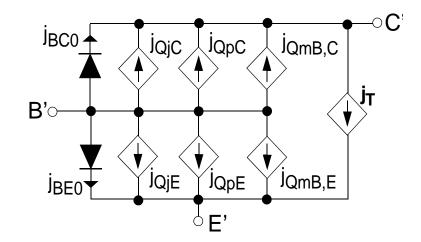
$$=> \max_{t} j_{C}(t) = 1.5 J_{C}(f_{T,peak}) !$$

excellent agreement for small-signal and large-signal case
 reference for compact model related simplifications

Compact modeling approach

Simplifications of TICCR charge description

Assumptions

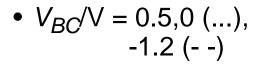

- quasi-static carrier distribution => charge, GICCR
- negligible recombination => collector charging current density:

$$j_{QC} = q \int_0^{x_{bl}} \eta_C \frac{\partial n}{\partial t} dx$$

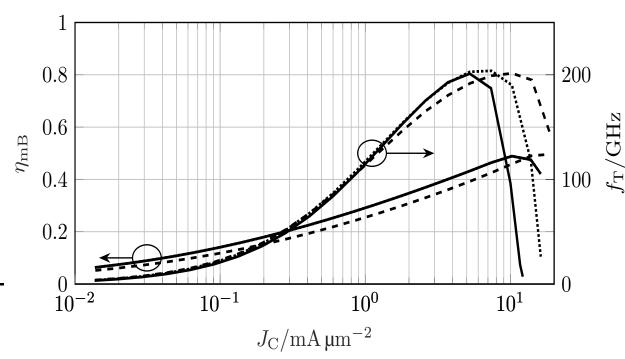
• η_C = 1 for BC region => components

$$j_{QjC} = \frac{\partial \overline{Q}_{jC}}{\partial t} = q \int_{x_{jC}}^{x_{bl}} \frac{\partial (\Delta n - \Delta p)}{\partial t} dx$$

$$j_{QpC} = \frac{\partial \overline{Q}_{pC}}{\partial t} = q \int_{x_{iC}}^{x_{bl}} \frac{\partial \Delta p}{\partial t} dx$$



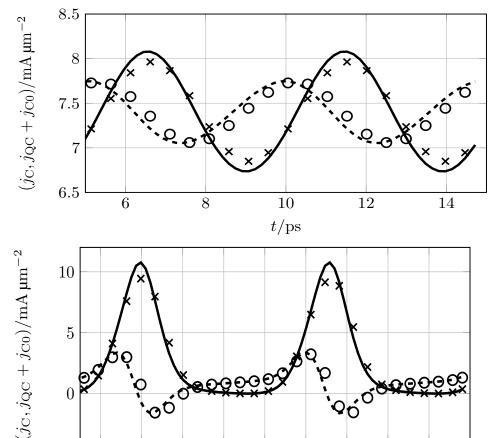
• assume $\eta_C = \eta_{mB} < 1$ for base region only:


$$j_{QmB, C} = \eta_{mB} \frac{\partial \overline{Q}_{mB}}{\partial t}$$
 with $\eta_{mB} = \int_{x_{jE}}^{x_{jC}} \eta_C \Delta n dx / \int_{x_{jE}}^{x_{jC}} \Delta n dx$

Base charge partitioning factor

$$\eta_{mB} = \frac{\int_{x_{jE}}^{x_{jC}} \eta_{C} \Delta n dx}{\int_{x_{jE}}^{x_{jC}} \Delta n dx}$$

f_τ curve added for reference



 $=>\eta_{\rm mB}$ depends on $J_{\rm C}$, but only slight function of $V_{\rm BC}$

- analytical formulation for bias dependence yet to be developed
 - excess phase shift = atan($\omega \eta_{mB} C_{dE}/g_m$) = atan($\omega \eta_{mB} \tau_f$) => $\eta_{mB} = \alpha_{IT}$
- existing compact models use bias independent partitioning factor (e.g. fixed value 1/3 in MEXTRAM)

Comparison to device simulation

- monofrequent sinusoidal input signal with frequency f => same conditions as before
- small-signal operation: model ...
 - amplidute higher
 - phase shifts
- large-signal operation: model ...
 - amplitude overshoot
 - phase shift during turn-off
- causes for deviations?
 - dynamic ic component phase shift
 - other?

, 00 , 000000

16

18

t/ps

20

22

24

26

28

14

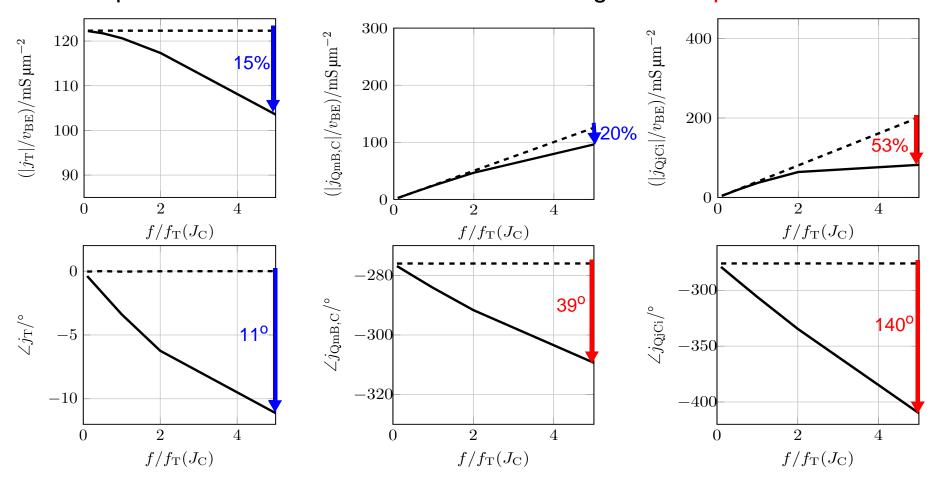

=> charge partitioning alone is not sufficient for accurately capturing dynamic collector terminal currant!

10

12

Frequency domain results

...indicating cause of observed deviations



accurate at low forward bias, but significant deviations at high bias

=> charge partitioning misses phase shift in *mobile* charge!

Deviations at higher harmonics

comparison of TCAD vs. CP model with charges from q.s. simulation

- relatively weak frequency dependence of transfer current
- significant frequency dep. of BC depletion charge (SCR modulation!)

Summary

- TICCR offers exact solution of drift-diffusion-based charging currents
 use as reference for 1D compact model development
- Using quasi-static charges, TICCR based charge-partitioning shows high accuracy up to $f_{T,1D}$, but large deviations for harmonics from 2 $f_{T,1D}$ on
- Base charge partitioning factor depends on J_T
 - => charge-partitioning model must include phases of charges!

Outlook

- Measurements of HV devices to validate predictions experimentally
- Develop (i) bias dependent base charge partitioning factor and
 (ii) representation of additional phase shift in BC depletion current
- Replace gyrator adjunct EC in HICUM by new analytical charge partitioning
 allows to delete two nodes

=> runtime reduction!

Acknowledgments

German Science Foundation DFG SCHR695/16

Ecsel project TARANTO