Temperature dependent modeling of sub-mm-wave SiGe HBT

X. Jin¹, N. Weddeler², M. Schröter ^{1,3}

¹TU Dresden, Chair for Electron Dev. & Integr. Circuits, 01062 Dresden, Germany
²Fraunhofer IIS, Institutsteil Entwicklung Adaptiver Systeme
³University of California San Diego, ECE Dept., La Jolla, USA

HICUM Workshop 2018
Rohde & Schwarz
Munich, Germany

OUTLINE

- Introduction
- Model evaluation over a wide range of temperatures
- Comparison between a-DD simulation and measurements

Conclusions

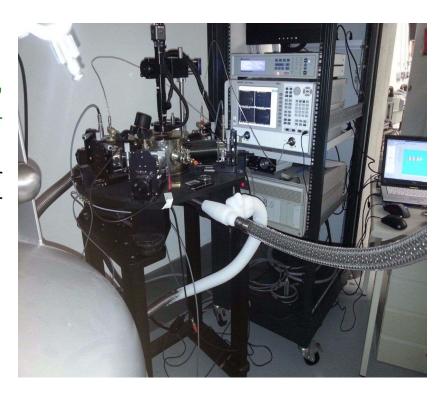
Introduction

- SiGe HBTs have found widespread application in many fields requiring highfrequency performance, such as
 - automotive radar
 - mm-wave imaging (e.g. security scanners)
 - satellite communication
 - geothermal wells
- SiGe HBTs have also shown excellent performance over a wide range of temperatures including cryogenics

=> new DFG project:

- Investigation and extension of augmented drift-diffusion device simulation for a temperature range between 4 K and 450 K, enabling ...
 - compact model development
 - model verification at temperatures beyond room temperature for high-speed applications
- Investigation and extension of HICUM for temperature range of [4, 450] K, enabling ...
 - · circuit design over a wide range of temperatures and applications

Measured Devices

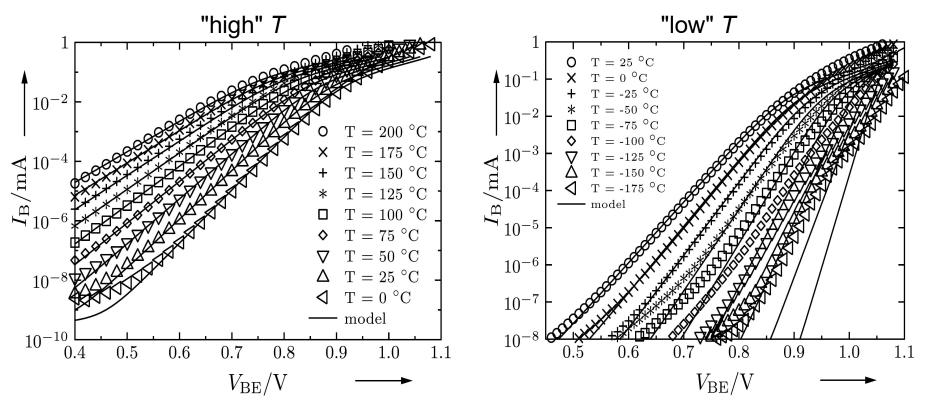

(present status)

- Technology: early IHP process version of DOTSEVEN project
 - SG13G2 backend
- $b_{E0} = (130, 180, 390, 780)$ nm in CBEBC configuration
- $I_{E0} = 10.16 \, \mu \text{m}$
- Displayed figures from transistor with b_{E0} = 130 nm
 - · further results are available for other widths

Measurement set-up

Probe station

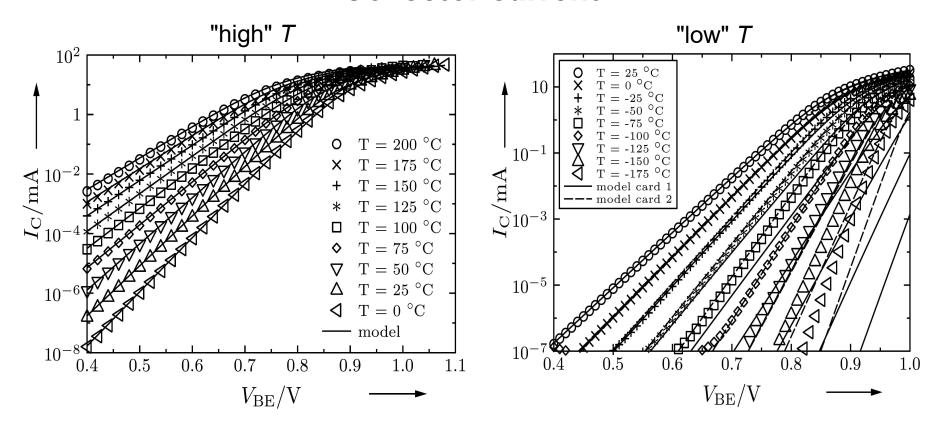
- At 0 °C and above: thermal chuck
- Cryogenic temperatures:
 - picoprobe Model 67 "High Performance" with CS-5 calibration substrate specially for cryo chamber
 - vacuum required to avoid freezing of water (T<273.15K) and gases (like nitrogen for T<77K)
 - Lakeshore TTPX cryogenic probe station
 - · cooling with liquid helium



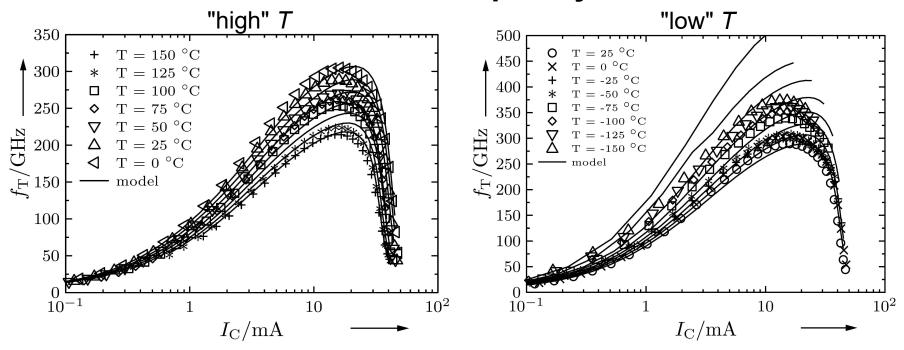
Electrical equipment

- DC/HF: Hewlett-Packard 4142B Modular DC Source/Monitor
- S-Parameters: Keysight N5235A PNA-L Microwave Network Analyzer

Model evaluation over a wide range of temperatures


Base current

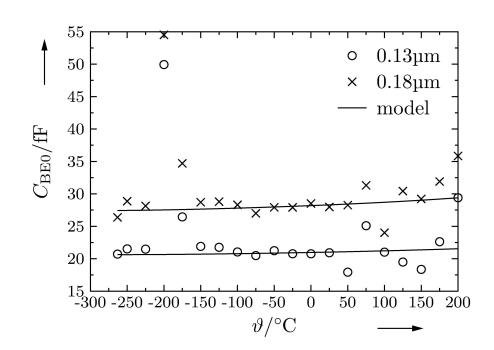
- Base current decreases as temperature decreases $(E_q(T))$
- Model shows overall agreement with measured I_B from -75°C to 200°C
- Deviation for 25°C and 0°C at low bias is related to bias-tee leakage
- Deviations increase below -75°C: measurements are strongly non-ideal


=> Physical cause for deviations at low *T* are under investigation

Collector current

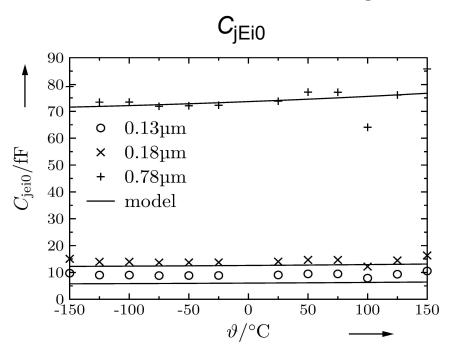
- Two different model parameter sets
 - (1) card 1: agrees well with measurements in [-50, 200] °C range
 - (2) card 2: after fine-tuning $\Delta V_{\text{gBE}}(T)$, good agreement in [-125, 200] °C range
- Below -125°C => large(r) deviations
 - => Physical cause for deviations low *T* are under investigation

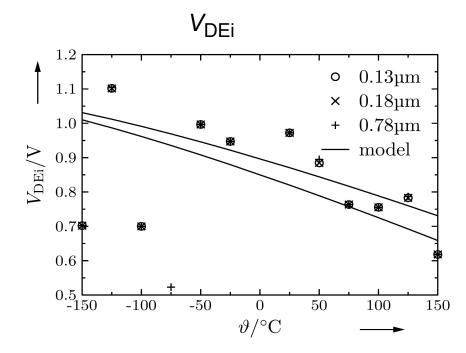
Transit frequency



- f_T increases as temperature decreases due to increased g_m
- Model agrees reasonably well with measurements in (0,150)°C range
 - need dedicated parameter extraction for these samples
 - measurement issues at T (175°C and 200°C, not shown here) for this device (not observed)
- At low temperatures => larger deviations already at low current densities
 - => T dependence of depletion capacitances?

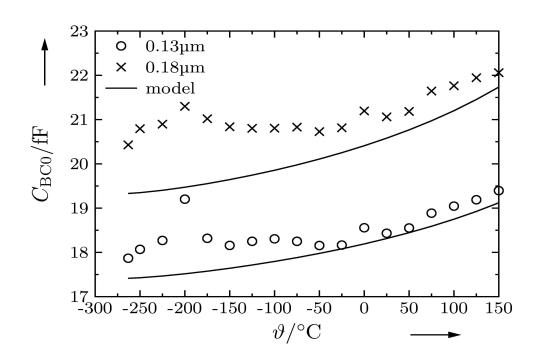
=> under investigation


Base-Emitter capacitance


- symbols: measurement data lines: HICUM/L2
- At low bias: $C_{BE0} = C_{jEi0} + C_{jEp0} + C_{BEpar}$
- C_{BEpar} is assumed to be temperature independent
- Extraction of depletion capacitance focuses on operating range [-0.5, 0.5] V

- Measurements down to -263.15°C were made only for two devices
- Capacitance decreases slightly towards lower T
- Model agrees well with measured capacitance data
 - measurement issues at 200°C, 175°C, -175°C and -200°C
 => under investigation
 - => Capacitance data do not confirm model f_T at low bias

BE depletion capacitance

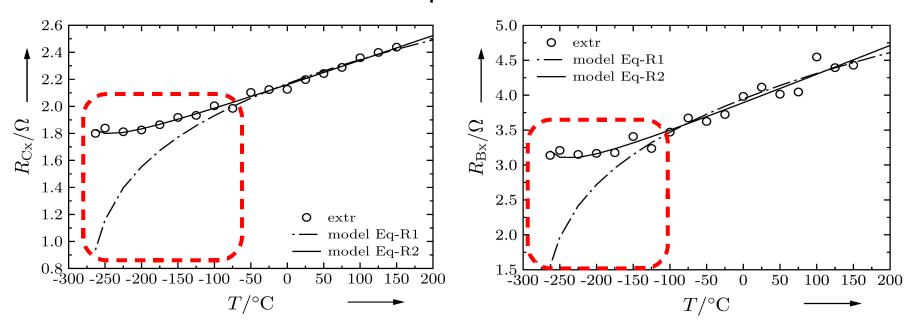


- Good agreement for C_{iEi0}
 - measurement data for all geometries incomplete at T < -150 °C
- Modeled V_{DFi} shows expected T dependence
 - V_{DEi} of smallest device (0.13 μ m) fine tuned (due to measurement issues at very low T)
- C_{iEi0} decreased slightly towards lower T
 - => additional measurements at very low T are required

Base-Collector capacitance

$$C_{BC0} = C_{jCi0} + C_{jCx0} + C_{BCpar}$$

- symbols: measurement data lines: HICUM/L2
- C_{BCpar} assumed to be temperature independent



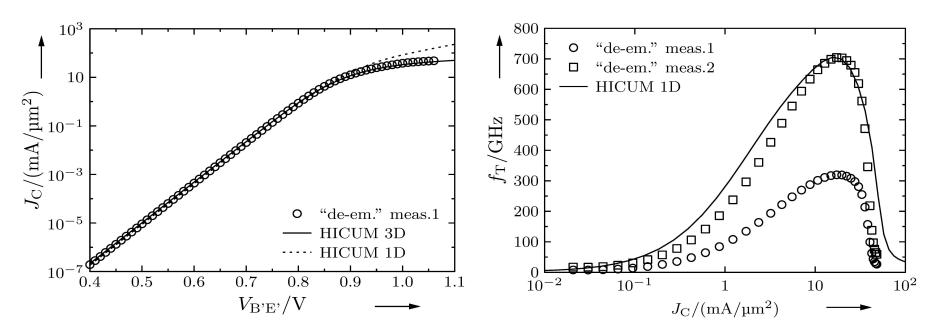
- Weaker decrease of $C_{\rm BC0}$ towards low temperature
- Model underestimates extracted $C_{\rm BC0}$ at low T => appears to be cause of higher $f_{\rm T}$ of compact model

=> Observed deviation is under investigation

Series Resistance

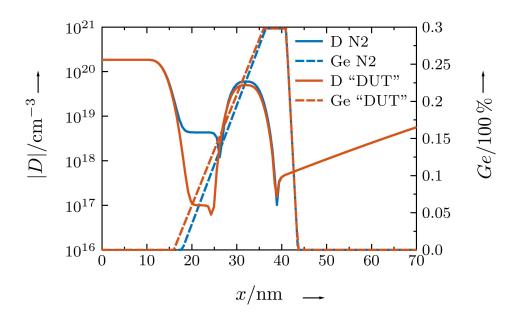
model vs. experimental results

• HICUM expression for temperature dependence of series resistances


$$R_{\mathbf{x}}(T) = R_{\mathbf{x}}(T_0) \left(\frac{T}{T_0}\right)^{\varsigma_{\mathbf{rx}}} \text{ with } \mathbf{x} = \{E, Cx, Bx, Bi0\}$$
 (R1)

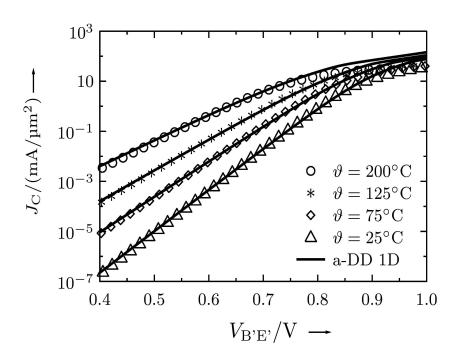
- $R_{\rm x}(T_0)$: resistance at reference T_0 , $\zeta_{\rm fX}$ depends on doping concentration
- Modification for very low $T: R_{\mathbf{x}}(T) = R_{\mathbf{x}}(T_0) \left(\frac{T}{T_0}\right)^{\varsigma_{\mathbf{rx}}} (1 + a_{\mathbf{rx}} \Delta T)$ (R2)

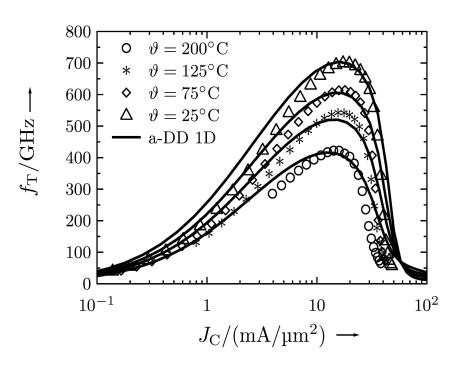
Comparison between a-DD Simulation and measurements


Comparison between HICUM 1D and "de-em" measurements

"de-em" of measurement for 1D case

- 1D HICUM parameter set for "de-embedding" 1D behavior from measured terminal data
 - "de-em. meas.1": only for I_C
 - "de-em. meas.2": for both $I_{\rm C}$ and $f_{\rm T}$
- Adjust a-DD simulator model parameters & doping profile to match deembedded 1D $J_{\rm C}$ and $f_{\rm T}$
 - Example for modified DD parameters: $v_{s,n} = 2.4*10^7$ cm/s (from 1.07*10⁷ cm/s)

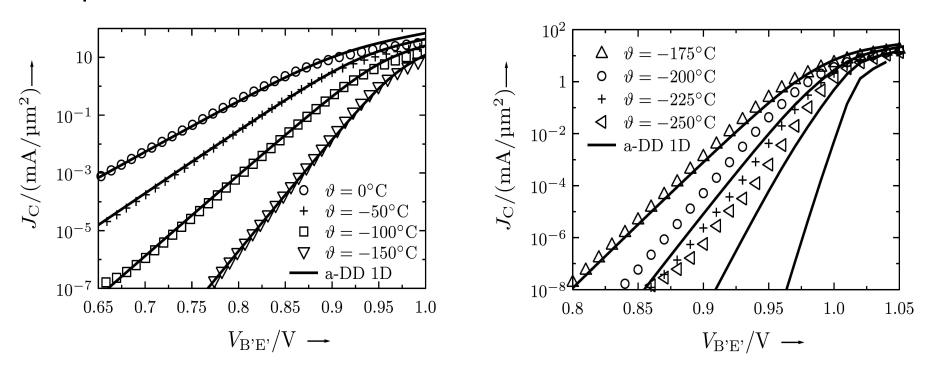

Simulated 1D doping and Ge profiles



- Initial profile: N2 of DOTSEVEN
- Modification of initial profile based on 1D depletion capacitances, transit time and DC collector current density
- Not the actual device profile but has similar electrical behavior as the measurements
 - => can be used for comparing characteristics with measurements at cryogenic temperatures

Collector current density and transit frequency at high T

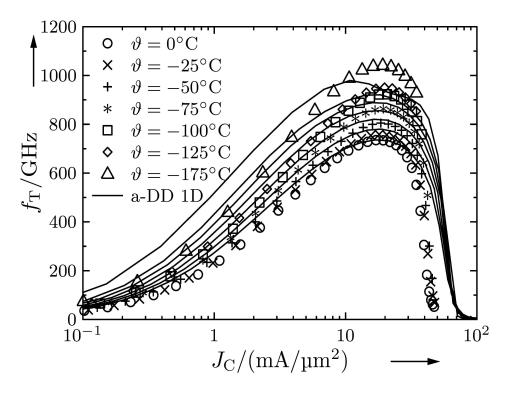
Comparison between a-DD simul. and "de-embedded" measurement



- a-DD simulator calibration based on peak f_T only
- Small discrepancy in $J_{\mathbb{C}}$ at high bias due to bias dependent current spreading
- => overall good agreement between calibrated a-DD device simulation and measured characteristics at room and high temperatures

Collector current density at low T

Comparison between a-DD simul. and "de-embedded" measurement



=> good agreement at *T* down to -175°C, but deviations below -175°C

- possible causes for deviation (under investigation):
 - present DD transport (model) at very low temperatures requires additional trap-assisted tunneling current through base region
 - Note: freeze-out unlikely to occur due to large doping concentrations

Transit frequency at low T

Comparison between a-DD simul. and "de-embedded" measurement

=> good agreement at T down to -125°C, deviations below -125°C

- f_{T.max} of a-DD is lower than measurement at -175°C
- measurement issues at -150°C and below -175°C and not shown

Conclusions

- DC/HF measurements of $(f_T, f_{max}) = (300,500)$ GHz SiGe HBTs over a wide range of temperatures (incl. cryogenic region)
- Extension of *T* dependent series resistance expression toward very low temperature for saturation of resistance
- Good agreement between HICUM/L2 and measurements, except below
 - -125 °C for $I_{\rm C}$
 - 0 °C for f_{T}
 - -50 °C for *I*_B
- Numerical simulation (DEVICE) with augmented drift-diffusion transport parameters and adjusted doping profile agrees well with measurements from
 - -175 °C to 200 °C for $J_{\rm C_i}$ deviations at T < -175 °C possibly due to TAT current through the base
 - -125°C to 200°C for f_T

Future work

- Investigate physical causes for observed deviations at low T
- develop physics-based extensions for transfer and base current, charges

Acknowledgments

German Science Foundation DFG (SCHR695/7, SCHR695/16)