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Introduction

* Recent developments in HBT technology (SiGe, InP) are attractive for mm-
and sub-mm-wave applications

» For high-speed/-frequency applications, the high transconductance makes
HBTs preferable over MOSFETSs, especially for drivers, PAs, oscillators

» Design of such circuits requires accurate large-signal (I.s.) compact models

e Experimental verification of |.s. models
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» Existing compact (lumped) models can 10 AT
show significant deviations, especially t/ps
during turn-off, due to lumped Rg;

=> investigate and evaluate options for improving accuracy
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High-speed turn-off process

» discharge of internal transistor from
the E window edge/perimeter

=> causes (strong) dynamic emitter cur-
rent crowding (ECC)

« ECC is a distributed effect
dynamic ECC cannot be captured by
lumped internal base resistance

» Standard ECC equivalent circuit with
parallel Crpg; Is

"N. 0 Cee valid only for
2 ToveNe e I g Small-signal
g R I :
os W 1z Rg operation!
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=> need computationally efficient representation of distributed charging and
discharging effects (lateral NQS effects)
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Device simulation
2D device simulation of the internal transistor only (SiGe HBT)

* no BE perimeter junction  smooth pulse vg to avoid
artificial spikes
e half structure (due to symmetry)
e adjustable maximum fre-

guency contained in pulse

| . » 50 GHz (max. frequency)

VCK) X

 simulated emitter widths: 0.1, 0.2, 0.4 um
=> used as reference for evaluating compact representations of internal base
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Compact modeling approaches

Compact modeling approaches
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Compact modeling approaches

Equivalent circuits for the internal transistor

 10-transistor model (reference)  2-transistor model variants

* non-equal distribution
B* ig 0.4:0.6 (area); 0.15:0.5 (Rg;)
VB+g! - . . . S

Ar = rSBI (y)4|

e equal distribution of E area

 1-transistor model (preferred)
« lateral charge partitioning across Rg;
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ol

Model parameters generated from HICUM/L2
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Compact modeling approaches

HICUM/L2Z2 results

Verification against 2D device simulation

Gummel characteristics transconductance
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Compact modeling approaches

HICUM/L2Z2 results

Verification against 2D device simulation

Input admittance
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=> excellent agreement for DC and

guasi-static characteristics
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Compact modeling approaches

Quiescent operating points

... and investigated switching amplitudes
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« different bias regions and switching amplitudes covered

Selected case here: AV = 200 mV for bgg = 0.4 um
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Model evaluation by 2D transient simulation

Model evaluation by 2D transient

simulation
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Model evaluation by 2D transient simulation

10-transistor model (reference)

turn-on i i % turn-off
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=> distributed model agrees well with TCAD

* larger deviations for compact (lumped) model
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Model evaluation by 2D transient simulation

n-transistor models (n =2, 5, 10)
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=> need at least n =5 for capturing time dependent behavior

 deviations of equidistributed 2-transistor model similar to 1-transistor model
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Model evaluation by 2D transient simulation

Non-equidistributed 2-transistor model

turn-off

turn-on
0.4
i /mA L
C08l SIS
0.2}
0.1 o DEVICE
== 10-T. model
O%ss —-Symm. 2-T. model |
—Asymm. 2-T. model
-0.1 >
0 10 20 30 40
t/ps
0.2
_ N A o DEVICE
ig/m --10-T. model
0.15 —Symm. 2-T. model

0.1

0.05¢

—Asymm. 2-T. model

0 10

20 30 40
t/ps

'oDEVICE

--- 10-T. model
—-Symm. 2-T. model
—Asymm. 2-T. model||

0 ==X SR—
0 5 10 15
t/ps
2004 :
ig/HA
I“t ‘_-. -----------------
-200 ¢ &
o DEVICE
-400 -+ 10-T. model
—-Symm. 2-T. model
—Asymm. 2-T. model
-600 : >
0 5 10 15

t/ps

=> significant improvement due to non-equidistributed Ag and Rg;

* bias & freq. independent partitioning, but computational effort still too large
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Model evaluation by 2D transient simulation

Charge partitioning across internal base resistance
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=> excellent agreement for compact CP-Rg; model => preferred solution!

 partitioning factor depends on bias!
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Model evaluation by 2D transient simulation

Conclusions

« Existing (standard) approach (Rg;j, Crgi) for describing dynamic emitter cur-
rent crowding (ECC) valid only for small-signal operation

e« Compact (lumped) model shows visible deviations for large-signal ECC
operation, especially for turn-off switching

 Investigated alternatives for describing dynamic large-signal ECC
» 10-transistor model => accurate, but computationally far too expensive
» equidistributed 2-transistor model => similar deviations as 1-transistor model

» non-equidistributed 2-transistor model
=> similar accuracy as 10-transistor model, but computationally still too expensive

« lateral charge partitioning across Rg;
=> accurate and computationally efficient, but partitioning factor is bias dependent

=> pursue lateral charge partitioning approach

Future work

» Develop physics-based formulation for partitioning factor

 Verify charge partitioning model for wide range of voltage swings
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Model evaluation by 2D transient simulation

Acknowledgments

German Science Foundation DFG SCHR695/14

Ecsel project TARANTO

© MS 17



