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Introduction
• Recent developments in HBT technology (SiGe, InP) are attractive for mm-

and sub-mm-wave applications 

• For high-speed/-frequency applications, the high transconductance makes
HBTs preferable over MOSFETs, especially for drivers, PAs, oscillators

• Design of such circuits requires accurate large-signal (l.s.) compact models 

=> investigate and evaluate options for improving accuracy 
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• Experimental verification of l.s. models
restricted to 13 GHz! 
• using PNA-X and 5 harmonics for pulse recon-

struction in time domain

=> Investigation of high-speed l.s. switch-
ing behavior needs to be based 

on TCAD 

• Existing compact (lumped) models can
show significant deviations, especially
during turn-off, due to lumped RBi  
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High-speed turn-off process

=> need computationally efficient representation of distributed charging and 
discharging effects (lateral NQS effects)
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• discharge of internal transistor from
the E window edge/perimeter

=> causes (strong) dynamic emitter cur-
rent crowding (ECC)

• ECC is a distributed effect
dynamic ECC cannot be captured by
lumped internal base resistance 

• Standard ECC equivalent circuit with
parallel CRBi is
valid only for
small-signal
operation! RBi

CRBi

B* B’
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Device simulation
2D device simulation of the internal transistor only (SiGe HBT) 

• simulated emitter widths: 0.1, 0.2, 0.4 μm
=> used as reference for evaluating compact representations of internal base
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• no BE perimeter junction

• half structure (due to symmetry)

• smooth pulse vG to avoid
artificial spikes

• adjustable maximum fre-
quency contained in pulse 
• 50 GHz (max. frequency)
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Compact modeling approaches

Equivalent circuits for the internal transistor

Model parameters generated from HICUM/L2
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• 10-transistor model (reference) • 2-transistor model variants
• equal distribution of E area
• non-equal distribution

0.4:0.6 (area); 0.15:0.5 (RBi)

• 1-transistor model (preferred)
• lateral charge partitioning across RBi 
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Compact modeling approaches

HICUM/L2 results
Verification against 2D device simulation

Gummel characteristics transconductance
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Compact modeling approaches

HICUM/L2 results
Verification against 2D device simulation

input admittance Transit frequency

=> excellent agreement for DC and 
quasi-static characteristics 
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Compact modeling approaches

Quiescent operating points
... and investigated switching amplitudes

• different bias regions and switching amplitudes covered
Selected case here: ΔV = 200 mV for bE0 = 0.4 μm 
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Model evaluation by 2D transient simulation

 Model evaluation by 2D transient 

simulation 
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Model evaluation by 2D transient simulation

10-transistor model (reference) 

=> distributed model agrees well with TCAD

• larger deviations for compact (lumped) model 
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Model evaluation by 2D transient simulation

n-transistor models (n = 2, 5, 10) 

=> need at least n = 5 for capturing time dependent behavior 

• deviations of equidistributed 2-transistor model similar to 1-transistor model
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Model evaluation by 2D transient simulation

Non-equidistributed 2-transistor model 
turn-on                                                      turn-off 

=> significant improvement due to non-equidistributed AE and RBi 

• bias & freq. independent partitioning, but computational effort still too large 

iT2

RE2

iBCi2

E

iBEi2

C’

B’

E2’

RBi2

QBCi2

QBEi2

RE1

iBCi1

iBEi1

B’

E1’

RBi1

QBCi1

QBEi1

iT1



 © MS 15

Model evaluation by 2D transient simulation

Charge partitioning across internal base resistance 
turn-on                                                      turn-off 

=> excellent agreement for compact CP-RBi model  =>  preferred solution! 

•  partitioning factor depends on bias! 

E’

B*
iBi

vB*E’

RBi B’

vB’E’ (1-α)QpαQp



 © MS 16

Model evaluation by 2D transient simulation

Conclusions
• Existing (standard) approach (RBi, CRBi) for describing dynamic emitter cur-

rent crowding (ECC) valid only for small-signal operation 

• Compact (lumped) model shows visible deviations for large-signal ECC
operation, especially for turn-off switching 

• Investigated alternatives for describing dynamic large-signal ECC 
• 10-transistor model  =>  accurate, but computationally far too expensive 
• equidistributed 2-transistor model  =>  similar deviations as 1-transistor model 
• non-equidistributed 2-transistor model  

=> similar accuracy as 10-transistor model, but computationally still too expensive 
• lateral charge partitioning across RBi  

=> accurate and computationally efficient, but partitioning factor is bias dependent 

=> pursue lateral charge partitioning approach 

Future work

• Develop physics-based formulation for partitioning factor 

• Verify charge partitioning model for wide range of voltage swings 
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Model evaluation by 2D transient simulation
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