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Motivation

e Unlicensed mm-wave bands allow for high resolution
Imaging radars to be integrated in small form factor
systems.

® Image (lateral) resolution related to A=c/f (3mm at 100GHz) in
diffraction limited systems.

® Antenna size on the order of A /2 (i.e., resonant antenna)
® Antenna spacing close to A/2 (linear array)

e Advanced SiGe technology to realize high-performance
broadband front-ends interfacing with the radiating
elements.
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Frequency-modulated continuous-wave radar
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FMCW imaging radar

In order to create 2D images of

. : Y
an object, beam steering along P~
one axis is implemented. ) -
Delay elements or phase shifters P~ Y
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FMCW imaging radar

To obtain 3D images, beam
steering capabilities also on the
other axis (i.e., y) are
Implemented.

Bi-dimensional beam steering
requires a phase-shifter or true- >°uree
time delay for every radiating
element.

N2 delay elements required
for NXN antenna matrix
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Frequency scanning FMCW concept

To reduce the system complexity (i.e., number of delay
elements) in high resolution systems, the beam can be steered

along one axis using frequency modulation, which is called
frequency scanning.
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Frequency scanning FMCW concept

To reduce the system complexity (i.e., number of delay
elements) in high resolution systems, the beam can be steered
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Frequency scanning FMCW detection

An

gle information:

- FMCW provided by phase shifter settings
- Frequency scanning FMCW provided by time of arrival
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Frequency scanning FMCW, detection

When analysing the detection equation we have:
C

Rmin r = 5 (improves with large modulation BW)

Ttar X Pp

Doosotution X q)iB (improves with antenna gain and number of
elements)

Where

Dy = %(180/71) (target’s angle seen by antenna in degrees)

dr (beam width of main lobe )
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Frequency scanning FMCW

To enable integrated, high performance frequency scanning
systems the required building blocks (ICs) need to be interface
over a broadband with frequency scanning antennas.
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Integrated waveguide technology

The DRIE waveguide process to integrate silicon filled waveguide.
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"Silicon-Filled Rectangular Waveguides and Frequency Scanning Antennas for mm-Wave Integrated Systems," Antennas

and Propagation, Early Access Atrticles 2013.

e



Process features:
* Continuous metal side walls

» Size reduction (silicon g,)

 Photolithographic accuracy

* Planar feed
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Antenna interface, on-to-off chip

To achieve high system performance requires a wide FM
bandwidth. To properly deliver the realized signal to the
radiator, a broadband antenna interface needs to be realized.

Low inductance (56 pH)
flip-chip transition employed.
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Antenna interface, waveguide feed

The broadband feed of the rectangular waveguide is realized
via a coplanar slot antenna with parasitic longitudinal slots.
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Frequency scanning antenna

Slots with different dimensions and offsets enable scanning
frequency antenna, simplifying the system architecture.
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Frequency scanning antenna

Employing a Tschebyscheff distribution of the radiated power
by each slot high gain, low side-lobes antennas can be

Integrated.
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System demonstrator IC

1.2 mm

Single-chip 94 GHz up-conversion and receiver in 0.13 um Bi-
CMOS, integrated in ST 9MW technology (230/280, F/F..,)-
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System assembly demonstrator

Complete demonstrator with 20 horizontal radiators providing
8.5° half power beam width, and 4 vertical channels.

Absorber used to

minimize radiation
disturbance due to
transition.
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System, testing under static FMCW

The demonstrator was tested (input ~12GHz) and
benchmarked versus stand-alone antenna measurements.
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Reduced complexity imaging system

High resistivity silicon provides
the integration platform.

FM provides beam steering
along X direction.

Delays in the DPLL frequency
ramps provide beam steering
along Y direction.

Linear multiplier (i.e., x2 with
60GHz input) to access the
desired operating frequency.
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Advanced building blocks SiGe enabled

Digital intensive PLL enables a
high level of programmability and
bullt-in calibration/self-test
capabilities.

Millimeter-wave DPLL reduces
the number of in-band spurs and
relaxes isolation requirements on
the following stages.
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Broadband building blocks, DPLL
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Broadband building blocks, DPLL

DPLL implemented in 65-nm TSCM CMOS
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Advanced building blocks SiGe enabled

Increasing operating frequencies TX array
will allow for higher resolution
Images and higher gain antennas.

Frequency scanning FMCW
requires higher power, when
compared to NxXN beam steering
approaches (due to spatial power
combining), and efficient PAs
operating in the mm-wave band. Power (@

combiner

Enabled by DOT7 BICMOS
technology
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Power combining mm-wave PAS

_’l\ Output/V ., to 500 load

T5: Parasitic-compensated
power combining balun

Three-stage transformer-coupled
multi-path PA developed.

Floating
terminal

Power splitter and combiner utilizes
parasitic-compensation to reduce
Interwinding capacitance effects.
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Y. Zhao, J. R. Long, and M. Spirito, “A 60GHz-band 20dBm power amplifier with 20% peak PAE,” in Proc. of IEEE-RFIC, Jun. 2011,
pp. 1-4.



Power combined mm-wave PAsS

P in dBm, peak-PAE, in %,
and power gain at peak-PAE, in dB

PA implemented in ST 130nm SiGe BICMOS.
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Conclusions

A system level architecture to reduce the complexity of imaging system
described.

Broadband antenna interface and high-gain antennas have been
realized using flip-chip assembly and silicon integrated waveguide
technology.

A first prototype of highly-integrated radar imaging system based on a
frequency scanning FMCW concept was realized.

The potential for advanced building blocks and system integration
arising from advanced SiGe BICMOS technology is identified.

State of the art building blocks enabling true time delays, frequency
sweeping and power amplification in CMOS and BICMOS technologies
developed and benchmarked.
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Radiated power demonstrator

Spectrum analyser
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